Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (03): 17-26.doi: 10.13475/j.fzxb.20240304301
• Fiber Materials • Previous Articles Next Articles
LI Yi1, ZHANG Hengyu1, GUO Wenzhuo1, CHEN Jianying1, WANG Ni1, XIAO Hong2(
)
CLC Number:
| [1] | ARTS I, FISCHER A, DUCKETT D, et al. Information technology and the optimisation of experience: the role of mobile devices and social media in human-nature interactions[J]. Geoforum, 2021, 122: 55-62. |
| [2] | FU Hai, BAI Yu'an, DUAN Shuqian, et al. Structure design of multi-layered ABS/CNTs composite foams for EMI shielding application with low reflection and high absorption characteristics[J]. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.157168. |
| [3] |
PANDE S, SINGH B P, MATHUR R B, et al. Improved electromagnetic interference shielding properties of MWCNT-PMMA composites using layered structures[J]. Nanoscale Research Letters, 2009, 4(4): 327-334.
doi: 10.1007/s11671-008-9246-x pmid: 20596500 |
| [4] | BARATHI DASSAN E G, ANJIANG AB RAHMAN A, ABIDIN M S Z, et al. Carbon nanotube-reinforced polymer composite for electromagnetic interference application: a review[J]. Nanotechnology Reviews, 2020, 9(1): 768-788. |
| [5] | DADASHI FIROUZJAEI M, KARIMIZIARANIET M, MORADKHANI H, et al. MXenes: the two-dimensional influencer[J]. Materials Today Advances, 2022. DOI:10.1016/j.mtadv.2021.100202. |
| [6] | VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021. DOI:10.1126/science.abf1581. |
| [7] | IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: a review[J]. Advanced Functional Materials, 2020. DOI:10.1002/adfm.202000883. |
| [8] | ZHANG Hengyu, CHEN Jianying, JI Hui, et al. Electromagnetic interference shielding with absorption-dominant performance of Ti3C2Tx-MXene/non-woven laminated fabrics[J]. Textile Research Journal, 2021, 91(21/22): 2448-2458. |
| [9] | ZHANG Hengyu, JI Hui, DAI Guoliang, et al. Nanoarchitectonics of integrated impedance gradient MXene/PPy/polyester composite fabric for enhanced microwave absorption performance[J]. Composites Part A. Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2022.107163. |
| [10] | LEI Zuomin, TIAN Dingkun, LIU Xuebin, et al. Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivit[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.130365. |
| [11] |
MEI Hui, YANG Dou, YANG Wenqiang, et al. 3D-printed impedance gradient Al2O3 ceramic with in-situ growing needle-like SiC nanowires for electromagnetic wave absorption[J]. Ceramics International, 2021, 47(22): 31990-31999.
doi: 10.1016/j.ceramint.2021.08.085 |
| [12] | LI Yang, SHEN Bin, YI Da, et al. The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams.[J]. Composites Science and Technology, 2017. 138: 209-216. |
| [13] | YANG Zhen, LIANG Qingxuan, DUAN Yubing, et al. Electromagnetic characteristics and 3D-printing realization of a lightweight hierarchical wave-absorbing metastructure for low-frequency broadband absorp-tion[J]. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2023.169894. |
| [14] |
AHANKARI S, PAILWAL P, SUBHEDAR A, et al. Recent developments in nanocellulose-based aerogels in thermal applications: a review.[J]. ACS Nano, 2021, 15(3): 3849-3874.
doi: 10.1021/acsnano.0c09678 pmid: 33710860 |
| [15] |
LI Qihua, YUAN Zhanhong, ZHANG Chi, et al. Tough, highly oriented, super thermal insulating regenerated all-cellulose sponge-aerogel fibers integrating a graded aligned nanostructure[J]. Nano Letters, 2022, 22(9): 3516-3524.
doi: 10.1021/acs.nanolett.1c03943 pmid: 35363493 |
| [16] | YAN Zhang, YU Jian, LU Jiayu, et al. Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance[J]. Journal of Alloys and Compounds, 2021. DOI:10.1016/j.jallcom.2021.159442. |
| [17] | ZHANG Zilong, ZHANG Lei, CHEN Xiqiao, et al. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band[J]. Journal of Magnetism and Magnetic Materials, 2020. DOI:10.1016/j.jmmm.2019.166075. |
| [18] |
ZHOU Xuejiao, WEN Junwu, MA Xiaohua, et al. Manipulation of microstructure of MXene aerogel via metal ions-initiated gelation for electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2022, 624: 505-514.
doi: 10.1016/j.jcis.2022.05.166 pmid: 35679638 |
| [19] | DANG Saichao, LIN Yang, WEI Xuezhong, et al. Design and preparation of an ultrawideband gradient triple-layered planar microwave absorber using flaky carbonyl iron as absorbent.[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(20): 17651-17660. |
| [20] | LV Jing, LIANG Xiaohui, JI Guangbin, et al. Structural and carbonized design of 1D FeNi/C nanofibers with conductive network to optimize electromagnetic parameters and absorption abilities[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7239-7249. |
| [21] | SHENG An, REN Wei, YANG Yaqi, et al. Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2019.105692. |
| [22] | HE Li, LI Xun, ZHAO Yuchen, et al. The multilayer structure design of magnetic-carbon composite for ultra-broadband microwave absorption via PSO algor-ithm[J]. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.165088. |
| [23] | DING Ling, HUANG Ying, LIU Xudong, et al. Broadband and multilayer core-shell FeCo@C@mSiO2 nanoparticles for microwave absorption[J]. Journal of Alloys and Compounds, 2020. DOI:10.1016/j.jallcom.2019.152168. |
| [24] | WANG Chaozi, LI Jiang, GUO Shaoyun. High-performance electromagnetic wave absorption by designing the multilayer graphene/thermoplastic polyurethane porous composites with gradient foam ratio structure[J]. Composites Part A: Applied Science and Manufacturing, 2019. DOI:10.1016/j.compositesa.2019.105522. |
| [25] |
YIN Lixian, TIAN Xiaoyong, SHANG Zhentao, et al. Ultra-broadband metamaterial absorber with graphene composites fabricated by 3D printing[J]. Materials Letters, 2019, 239: 132-135.
doi: 10.1016/j.matlet.2018.12.087 |
| [26] | HU Guirong, WU Changmei, WANG Qian, et al. Ultrathin nanocomposite films with asymmetric gradient alternating multilayer structures exhibit superhigh electromagnetic interference shielding performances and robust mechanical propertie[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.137537. |
| [27] | CHEN Yiming, YANG Yang, XIONG Ye, et al. Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding[J]. Nano Today, 2021. DOI:10.1016/j.nantod.2021.101204. |
| [28] | LIU Yane, ZHANG Mingang, GAO Yanan, et al. Regulate the reaction kinetic rate of lithium-sulfur battery by rational designing of TEMPO-oxidized cellulose nanofibers/rGO porous aerogel with monolayer MXene coating[J]. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2021.162821. |
| [29] | ZHAI Jianyu, CUI Ce, LI Ang, et al. Waste cotton Fabric/MXene composite aerogel with heat generation and insulation for efficient electromagnetic interference shielding[J]. Ceramics International, 2022, 48(10): 13464-13474. |
| [30] | CUI Yuhong, YANG Ke, ZHANG Fangrong, et al. Ultra-light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion[J]. Composites Part A: Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2022.106986. |
| [31] | GUAN Xiaomei, YANG Zhihong, ZHOU Ming, et al. 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption[J]. Small Structures, 2022. DOI:10.1002/sstr.202200102. |
| [32] | JI Biao, FAN Shangwu, KOU Sijie, et al. Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2Tx MXene/polymer films[J]. Carbon, 2021, 181: 130-142. |
| [33] | Li Xiao, XU Diming, ZHOU Di, et al. Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption[J]. Carbon, 2023, 208: 374-383. |
| [34] | LI Mengmeng, ZHANG Meiling, ZHAO Yanjiao, et al. Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding[J]. Carbohydrate Polymers, 2022. DOI:10.1016/j.carbpol.2022.119306. |
| [35] | MA Meng, TAO Wenting, LIAO Xianjun, et al. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2022.139471. |
| [36] | INDRUSIAK T, PEREIRA M I, HEITMANN A P, et al. Epoxy/ferrite nanocomposites as microwave absorber materials: effect of multilayered structure[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(16): 13118-13130. |
| [37] | YANG Jianming, LIAO Xia, WANG Gui, et al. Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity[J]. Journal of Materials Chemistry C, 2020. 8(1): 147-157. |
| [1] | LIU Jinfeng, DU Kangcun, XIAO Chang, FU Shaohai, ZHANG Liping. Preparation of porous MXene/thermoplastic polyurethane fiber and its stress-strain sensing performance [J]. Journal of Textile Research, 2025, 46(03): 41-48. |
| [2] | LI Wanxin, SHU Dawu, AN Fangfang, HAN Bo, REN Zhigang, SHAN Juchuan. Degradation of reactive dye wastewater by titanium carbide and Fe3+ activated sodium persulfate [J]. Journal of Textile Research, 2025, 46(01): 138-147. |
| [3] | ZHU Xue, QIAN Xin, HAO Mengyuan, ZHANG Yonggang. Preparation and electromagnetic shielding performance of MXene/carbon nanofiber membranes by electrospinning/electrophoretic deposition [J]. Journal of Textile Research, 2025, 46(01): 1-8. |
| [4] | GUAN Yu, WANG Dong, GUO Yifang, FU Shaohai. Preparation and properties of MoS2/MXene flame retardant gas sensitive cotton fabrics [J]. Journal of Textile Research, 2024, 45(12): 159-165. |
| [5] | ZHANG Qi, TU Jiani, ZHANG Yanting, DING Ningyu, HAO Jiashu, PENG Shiyu. Influence of jacquard layer structure of warp knitted jacquard spacer shoe-upper materials on tensile properties [J]. Journal of Textile Research, 2024, 45(08): 150-157. |
| [6] | WANG Jian, ZHANG Rui, ZHENG Yingying, DONG Zhengmei, ZOU Zhuanyong. Research progress of flexible textile pressure sensor based on MXene [J]. Journal of Textile Research, 2024, 45(06): 219-226. |
| [7] | SONG Beibei, ZHAO Haoyue, LI Xinyu, QU Zhan, FANG Jian. Application of MXene-loaded cobalt-nitrogen doped carbon nanofibers in lithium-sulfur batteries [J]. Journal of Textile Research, 2024, 45(04): 24-32. |
| [8] | SHI Jilei, TANG Chunxia, FU Shaohai, ZHANG Liping. Preparation and properties of flexible thermal insulating cellulose aerogel [J]. Journal of Textile Research, 2024, 45(04): 8-14. |
| [9] | TAN Qifei, CHEN Mengying, MA Shengsheng, SUN Mingxiang, DAI Chunpeng, LUO Lunting, CHEN Yiren. Preparation and properties of nonwoven flame retardant sound-absorbing material from Hu sheep wool [J]. Journal of Textile Research, 2023, 44(05): 147-154. |
| [10] | LI Ganghua, WANG Hang, SHI Baohui, QU Lijun, TIAN Mingwei. Construction of flexible electronic fabric and its pressure sensing performance [J]. Journal of Textile Research, 2023, 44(02): 96-102. |
| [11] | FENG Yingjie, JIANG Gaoming, WU Guangjun, JIN Shuai. Structural design and forming method for one-piece sports knee pads [J]. Journal of Textile Research, 2023, 44(01): 112-118. |
| [12] | ZHAN Biqin, LI Yuxian, DONG Zhijia, CONG Honglian. Research on virtual display of fully-formed double-layerknitted clothing parts [J]. Journal of Textile Research, 2022, 43(08): 147-152. |
| [13] | ZHANG Meng, ZHOU Jiu. Design principle and method of double-layer full-color structure with central weft stitching [J]. Journal of Textile Research, 2022, 43(03): 83-88. |
| [14] | QIANG Rong, FENG Shuaibo, MA Qian, CHEN Bowen, CHEN Yi. Preparation and microwave absorption performance of cobalt/carbon fiber composites [J]. Journal of Textile Research, 2022, 43(02): 30-36. |
| [15] | LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy [J]. Journal of Textile Research, 2022, 43(01): 1-8. |
|
||