Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (03): 225-235.doi: 10.13475/j.fzxb.20240306702
• Comprehensive Review • Previous Articles
LUO Xin, WANG Lei, WANG Xiaoyou, WU Tao, ZHANG Zhenzhen, ZHANG Yifan(
)
CLC Number:
| [1] | QIU W, LIU X Y. Recent progress of applying mesoscopic functionalization engineering principles to spin advanced regenerated silk fibroin fibers[J]. Advanced Fiber Materials, 2022, 4(3): 390-403. |
| [2] | SHI C, HU F, WU R, et al. New silk road: from mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics based on cocoon silk materials[J]. Advanced Materials, 2021.DOI:10.1002/adma.202005910. |
| [3] | WU R, MA L, LIU X Y. From mesoscopic functionalization of silk fibroin to smart fiber devices for textile electronics and photonics[J]. Advanced Science, 2022.DOI:10.1002/advs.202103981. |
| [4] | QIU W, PATIL A, HU F, et al. Hierarchical structure of silk materials versus mechanical performance and mesoscopic engineering principles[J]. Small, 2019.DOI:10.1002/smll.201903948. |
| [5] | NGUYEN T P, NGUYEN Q V, NGUYEN V H, et al. Silk fibroin-based biomaterials for biomedical applications: a review[J]. Polymers, 2019, 11(12): 1-25. |
| [6] | YOSHIOKA T, HATA T, KOJIMA K, et al. Fabrication scheme for obtaining transparent, flexible, and water-insoluble silk films from apparently dissolved silk-gland fibroin of Bombyx mori silkworm[J]. ACS Biomaterials Science & Engineering, 2017, 3(12): 3207-3214. |
| [7] | WOLF H W, HOUGEN O A. Silk degumming: II: the rate of degumming Silk[J]. Textile Research Journal, 1935, 5(3): 134-148. |
| [8] |
ROCKWOOD D N, PREDA R C, YÜCEL T, et al. Materials fabrication from Bombyx mori silk fibroin[J]. Nature Protocols, 2011, 6(10): 1612-1631.
doi: 10.1038/nprot.2011.379 pmid: 21959241 |
| [9] | KRASNOV I, DIDDENS I, HAUPTMANN N, et al. Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales[J]. Physical Review Letters, 2008.DOI:10.1103/PhysRevLett.100.048104. |
| [10] | PUTTHANARAT S, STRIBECK N, FOSSEY S A, et al. Investigation of the nanofibrils of silk fibers[J]. Polymer, 2000, 41(21): 7735-7747. |
| [11] | XU G, GONG L, YANG Z, et al. What makes spider silk fibers so strong? from molecular-crystallite network to hierarchical network structures[J]. Soft Matter, 2014, 10(14): 2116-2125. |
| [12] | HAGN F, EISOLDT L, HARDY J G, et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly[J]. Nature, 2010, 465(7295): 239-242. |
| [13] |
KNOWLES T P, FITZPATRICK A W, MEEHAN S, et al. Role of intermolecular forces in defining material properties of protein nanofibrils[J]. Science, 2007, 318(5858): 1900-1903.
pmid: 18096801 |
| [14] |
SIMMONS A H, MICHAL C A, JELINSKI L W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk[J]. Science, 1996, 271(5245): 84-87.
pmid: 8539605 |
| [15] | PORTER D, VOLLRATH F. Silk as a biomimetic ideal for structural polymers[J]. Advanced Materials, 2009, 21(4): 487-492. |
| [16] |
VOLLRATH F, PORTER D. Spider silk as archetypal protein elastomer[J]. Soft Matter, 2006, 2(5): 377-385.
doi: 10.1039/b600098n pmid: 32680251 |
| [17] | TERMONIA Y. Molecular modeling of spider silk elasticity[J]. Macromolecules, 1994, 27(25): 7378-7381. |
| [18] | GOSLINE J M, DEMONT M E, DENNY M W. The structure and properties of spider silk[J]. Endeavour, 1986, 10(1): 37-43. |
| [19] | KARSAI Á, MÁRTONFALVI ZS, NAGY A, et al. Mechanical manipulation of Alzheimer's amyloid β1-42 fibrils[J]. Journal of Structural Biology, 2006, 155(2): 316-326. |
| [20] | BRATZEL G, BUEHLER M J. Sequence-structure correlations in silk: poly-ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7: 30-40. |
| [21] | LIU R, DENG Q, YANG Z, et al. ″Nano-fishnet″ structure making silk fibers tougher[J]. Advanced Functional Materials, 2016, 26(30): 5534-5541. |
| [22] |
KIM Y, CHANG H, YOON T, et al. Nano-fishnet formation of silk controlled by Arginine density[J]. Acta Biomaterialia, 2021, 128: 201-208.
doi: 10.1016/j.actbio.2021.04.001 pmid: 33862282 |
| [23] | CHOI W, CHOI M, JUN T, et al. Templated assembly of silk fibroin for a bio-feedstock-derived heart valve leaflet[J]. Advanced Functional Materials, 2023.DOI:10.1002/adfm.202307106. |
| [24] | WANG H Y, ZHANG Y, ZHANG M, et al. Functional modification of silk fibroin from silkworms and its application to medical biomaterials: a review[J]. International Journal of Biological Macromolecules, 2024.DOI:10.1016/j.ijbiomac.2023.129099. |
| [25] |
SAHOO J K, HASTURK O, FALCUCCI T, et al. Silk chemistry and biomedical material designs[J]. Nature Reviews Chemistry, 2023, 7(5): 302-318.
doi: 10.1038/s41570-023-00486-x pmid: 37165164 |
| [26] | ZHENG K, CHEN Y, HUANG W, et al. Chemically functionalized silk for human bone marrow-derived mesenchymal stem cells proliferation and differenti-ation[J]. ACS Applied Materials & Interfaces, 2016, 8(23): 14406-14413. |
| [27] |
WANG X, NAKAMOTO T, DULIŃSKA-MOLAK I, et al. Regulating the stemness of mesenchymal stem cells by tuning micropattern features[J]. Journal of Materials Chemistry B, 2016, 4(1): 37-45.
doi: 10.1039/c5tb02215k pmid: 32262807 |
| [28] | YU R, YANG Y, HE J, et al. Novel supramolecular self-healing silk fibroin-based hydrogel via host-guest interaction as wound dressing to enhance wound healing[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2020.128278. |
| [29] | BITAR L, ISELLA B, BERTELLA F, et al. Sustainable Bombyx mori's silk fibroin for biomedical applications as a molecular biotechnology challenge: a review[J]. International Journal of Biological Macromolecules, 2024.DOI:10.1016/j.ijbiomac.2024.130374. |
| [30] |
LIU X, SUN Y, CHEN B, et al. Novel magnetic silk fibroin scaffolds with delayed degradation for potential long-distance vascular repair[J]. Bioactive Materials, 2022, 7: 126-143.
doi: 10.1016/j.bioactmat.2021.04.036 pmid: 34466722 |
| [31] | HAO L, LI J, WANG P, et al. Spatiotemporal magnetocaloric microenvironment for guiding the fate of biodegradable polymer implants[J]. Advanced Functional Materials, 2021.DOI:10.1002/adfm.202009661. |
| [32] | WANG Q, SCHNIEPP H C. Nanofibrils as building blocks of silk fibers: critical review of the experimental evidence[J]. JOM, 2019, 71(4): 1248-1263. |
| [33] |
LIN N, LIU X Y. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles[J]. Chemical Society Reviews, 2015, 44(21): 7881-7915.
doi: 10.1039/c5cs00074b pmid: 26214062 |
| [34] | WANG Q, LING S, YAO Q, et al. Observations of 3 nm silk nanofibrils exfoliated from natural silkworm silk fibers[J]. ACS Materials Letters, 2020, 2(2): 153-160. |
| [35] | JIANG C, WU C, LI X, et al. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets[J]. Nano Energy, 2019, 59: 268-276. |
| [36] | CHEN Z, ZHANG H, LIN Z, et al. Programing performance of silk fibroin materials by controlled nucleation[J]. Advanced Functional Materials, 2016, 26(48): 8978-8990. |
| [37] | QIU W, LIU X Y. Recent progress of applying mesoscopic functionalization engineering principles to spin advanced regenerated silk fibroin fibers[J]. Advanced Fiber Materials, 2022, 4(3): 390-403. |
| [38] | HA S W, GRACZ H S, TONELLI A E, et al. Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin[J]. Biomacromolecules, 2005, 6(5): 2563-2569. |
| [39] | ZHOU C, CONFALONIERI F, JACQUET M, et al. Silk fibroin: Structural implications of a remarkable amino acid sequence[J]. Proteins: Structure, Function, and Bioinformatics, 2001, 44(2): 119-122. |
| [40] |
CHIARINI A. Silk fibroin/poly(carbonate)-urethane as a substrate for cell growth: in vitro interactions with human cells[J]. Biomaterials, 2003, 24(5): 789-799.
pmid: 12485797 |
| [41] | LI G, ZHOU P, SHAO Z, et al. The natural silk spinning process: a nucleation-dependent aggregation mechanism?[J]. European Journal of Biochemistry, 2001, 268(24): 6600-6606. |
| [42] |
LU Q, ZHU H, ZHANG C, et al. Silk self-assembly mechanisms and control from thermodynamics to kinetics[J]. Biomacromolecules, 2012, 13(3): 826-832.
doi: 10.1021/bm201731e pmid: 22320432 |
| [43] | JIN H J, KAPLAN D L. Mechanism of silk processing in insects and spiders[J]. Nature, 2003, 424(6952): 1057-1061. |
| [44] |
PARTLOW B P, BAGHERI M, HARDEN J L, et al. Tyrosine templating in the self-assembly and crystallization of silk fibroin[J]. Biomacromolecules, 2016, 17(11): 3570-3579.
pmid: 27736062 |
| [45] | INOUE S, TSUDA H, TANAKA T, et al. Nanostructure of natural fibrous protein: in vitro nanofabric formation of Samia cynthia ricini wild silk fibroin by self-assembling[J]. Nano Letters, 2003, 3(10): 1329-1332. |
| [46] | MING J, ZUO B. Silk I structure formation through silk fibroin self-assembly[J]. Journal of Applied Polymer Science, 2012, 125(3): 2148-2154. |
| [47] | KOH L D, CHENG Y, TENG C P, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Progress in Polymer Science, 2015, 46: 86-110. |
| [48] | KOONS G L, DIBA M, MIKOS A G. Materials design for bone-tissue engineering[J]. Nature Reviews Materials, 2020, 5(8): 584-603. |
| [49] |
FAROKHI M, MOTTAGHITALAB F, SAMANI S, et al. Silk fibroin/hydroxyapatite composites for bone tissue engineering[J]. Biotechnology Advances, 2018, 36(1): 68-91.
doi: S0734-9750(17)30121-0 pmid: 28993220 |
| [50] | SUN W, GREGORY D A, TOMEH M A, et al. Silk fibroin as a functional biomaterial for tissue engineering[J]. International Journal of Molecular Sciences, 2021.DOI:10.3390/ijms22031499. |
| [51] | PILUSO S, FLORES GOMEZ D, DOKTER I, et al. Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking[J]. Journal of Materials Chemistry B, 2020, 8(41): 9566-9575. |
| [52] | WANG Q, RAN X, WANG J, et al. Elastic fiber-reinforced silk fibroin scaffold with a double-crosslinking network for human ear-shaped cartilage regeneration[J]. Advanced Fiber Materials, 2023, 5(3): 1008-1024. |
| [53] | ZHANG Y, PENG S, LI X, et al. Design and function of lignin/silk fibroin-based multilayer water purification membranes for dye adsorption[J]. International Journal of Biological Macromolecules, 2023.DOI:10.1016/j.ijbiomac.2023.126863. |
| [54] | DOU Z, LI B, WU L, et al. Probiotic-functionalized silk fibroin/sodium alginate scaffolds with endoplasmic reticulum stress-relieving properties for promoted scarless wound healing[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 6297-6311. |
| [55] | ZHANG Z, JIN Y, YIN J, et al. Evaluation of bioink printability for bioprinting applications[J]. Applied Physics Reviews, 2018.DOI:10.1063/1.5053979. |
| [56] | CHEN X B, FAZEL ANVARI-YAZDI A, DUAN X, et al. Biomaterials/bioinks and extrusion bioprinting[J]. Bioactive Materials, 2023, 28: 511-536. |
| [57] | GU Y, FORGET A, SHASTRI V P. Biobridge: an outlook on translational bioinks for 3D bioprinting[J]. Advanced Science, 2022.DOI:10.1002/advs.202103469. |
| [58] | KIM E, SEOK J M, BAE S B, et al. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting[J]. Biomacromolecules, 2021, 22(5): 1921-1931. |
| [59] | HONG H, SEO Y B, KIM D Y, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering[J]. Biomaterials, 2020.DOI:10.1016/j.biomaterials.2019.119679. |
| [60] | CHOI K Y, AJITERU O, HONG H, et al. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink[J]. Acta Biomaterialia, 2023, 164: 159-174. |
| [61] | 高保东, 张岩, 唐文超, 等. 丝素基伤口敷料研究进展[J]. 纺织学报, 2016, 37(7): 162-168. |
| GAO Baodong, ZHANG Yan, TANG Wenchao, et al. Research progress of wound dressing based on silk fibroin[J]. Journal of Textile Research, 2016, 37(7): 162-168. | |
| [62] |
QIAO Z, LV X, HE S, et al. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings[J]. Bioactive Materials, 2021, 6(9): 2829-2840.
doi: 10.1016/j.bioactmat.2021.01.039 pmid: 33718665 |
| [63] | LI J, LI Y, GUO C, et al. Development of quercetin loaded silk fibroin/soybean protein isolate hydrogels for burn wound healing[J]. Chemical Engineering Journal, 2023.DOI:10.1016/j.cej.2023.148458. |
| [64] |
BAKADIA B M, QAED AHMED A A, LAMBONI L, et al. Engineering homologous platelet-rich plasma, platelet-rich plasma-derived exosomes, and mesenchymal stem cell-derived exosomes-based dual-crosslinked hydrogels as bioactive diabetic wound dressings[J]. Bioactive Materials, 2023, 28: 74-94.
doi: 10.1016/j.bioactmat.2023.05.002 pmid: 37234363 |
| [65] | SADEGHIANMARYAN A, AHMADIAN N, WHEATLEY S, et al. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding: a review[J]. International Journal of Biological Macromolecules, 2024.DOI:10.1016/j.ijbiomac.2024.131207. |
| [66] | YANG J, WANG Z, LIANG X, et al. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing activities and their working principles[J]. Advances in Colloid and Interface Science, 2024.DOI:10.1016/j.cis.2024.103155. |
| [67] | ZHANG Y, WANG X, ZHU S, et al. Serum albumin hydrogels designed by protein re-association for self-powered intelligent interactive systems[J]. Energy Storage Materials, 2024.DOI:10.1016/j.ensm.2024.103266. |
| [68] | XIONG Q, YANG Z, ZHANG X. Flexible triboelectric nanogenerator based on silk fibroin-modified carbon nanotube arrays[J]. Chemical Engineering Journal, 2024.DOI:10.1016/j.cej.2024.148986. |
| [69] | JIANG W, LI H, LIU Z, et al. Fully bioabsorbable natural-materials-based triboelectric nanogenerators[J]. Advanced Materials, 2018.DOI:10.1002/adma.201801895. |
| [70] | CAO X, XIONG Y, SUN J, et al. Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things[J]. Nano-Micro Letters, 2023, 15(1):258-298. |
| [71] | GUO Y, ZHANG X S, WANG Y, et al. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring[J]. Nano Energy, 2018, 48: 152-160. |
| [72] | TAN X, WANG S, YOU Z, et al. High performance porous triboelectric nanogenerator based on silk fibroin@MXene composite aerogel and PDMS sponge[J]. ACS Materials Letters, 2023, 5(7): 1929-1937. |
| [73] | ARIF Z U, KHALID M Y, NOROOZI R, et al. Additive manufacturing of sustainable biomaterials for biomedical applications[J]. Asian Journal of Pharmaceutical Sciences, 2023. DOI:10.1016/j.ajps.2023.100812. |
| [74] | GORE P M, NAEBE M, WANG X, et al. Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewater[J]. Journal of Hazardous Materials, 2022. |
| [75] |
XIE X, ZHENG Z, WANG X, et al. Low-density silk nanofibrous aerogels: fabrication and applications in air filtration and oil/water purification[J]. ACS Nano, 2021, 15(1): 1048-1058. DOI:10.1016/j.jhazmat.2021.127822.
pmid: 33439624 |
| [76] | ZHAO W B, WANG Y, LI F K, et al. Highly antibacterial and antioxidative carbon nanodots/silk fibroin films for fruit preservation[J]. Nano Letters, 2023, 23(24): 11755-11762. |
| [1] | ZHAN Kejing, YANG Xin, ZHANG Yinglong, ZHANG Xin, PAN Zhijuan. Fabrication and mechanical reinforcement of self-coagulated regenerated silk fibroin micro-nanofiber membranes [J]. Journal of Textile Research, 2025, 46(02): 10-19. |
| [2] | CHEN Qi, WU Qi, XU Jinlin, JIA Hao. Self-assembly and sensing applications of patterned conductive fabric matrix [J]. Journal of Textile Research, 2025, 46(02): 218-226. |
| [3] | LEI Fuwang, FENG Qi, HOU Aohan, ZHAO Zhenhong, TAN Jiazhao, ZHAO Jing, WANG Xianfeng. Preparation and properties of polyvinylidene fluoride-polyacrylonitrile/SiO2 fibrous membrane with unidirectional water-transport function [J]. Journal of Textile Research, 2024, 45(12): 1-8. |
| [4] | YANG Xin, ZHANG Xin, PAN Zhijuan. Structure and properties of fibroin nanofibril reinforced regenerated silk protein/polyvinyl alcohol fiber [J]. Journal of Textile Research, 2024, 45(11): 1-9. |
| [5] | DU Lei, WANG Shijie, JIANG Zhiming, ZHU Ping. Preparation and properties of halogen-free and phosphorus-free environment-friendly flame-retardant system for polyamide microfiber synthetic leather [J]. Journal of Textile Research, 2024, 45(11): 162-169. |
| [6] | LI Meng, DAI Mengnan, YU Yangxiao, WANG Jiannan. Research progress in application of silk fibroin-based biomaterials for bone repair [J]. Journal of Textile Research, 2024, 45(10): 224-231. |
| [7] | WANG Boxiang, XU Hangdan, LI Jia, LIN Jie, CHENG Dehong, LU Yanhua. Preparation and biocompatibility of temperature-sensitive composite membrane of tussah silk fibroin nanofiber [J]. Journal of Textile Research, 2024, 45(09): 18-25. |
| [8] | LI Chaowei, CHENG Yue, SU Xin, CHEN Pengfei, LI Dawei, FU Yijun. Structural regulation and biomedical applications of polyvinylidene fluoride nanofibers [J]. Journal of Textile Research, 2024, 45(04): 229-237. |
| [9] | LEI Caihong, YU Linshuang, JIN Wanhui, ZHU Hailin, CHEN Jianyong. Preparation and application of silk fibroin/chitosan composite fiber membrane [J]. Journal of Textile Research, 2023, 44(11): 19-26. |
| [10] | ZHANG Zifan, LI Pengfei, WANG Jiannan, XU Jianmei. Research progress in silk fibroin drug-loaded nanoparticles [J]. Journal of Textile Research, 2023, 44(10): 205-213. |
| [11] | YANG Qiliang, YANG Haiwei, WANG Dengfeng, LI Changlong, ZHANG Lele, WANG Zongqian. Fabrication and oil absorbency of superhydrophobic and elastic silk fibroin fibrils aerogel [J]. Journal of Textile Research, 2023, 44(09): 1-10. |
| [12] | YAO Shuangshuang, FU Shaoju, ZHANG Peihua, SUN Xiuli. Preparation and properties of regenerated silk fibroin/polyvinyl alcohol blended nanofiber membranes with predesigned orientation [J]. Journal of Textile Research, 2023, 44(09): 11-19. |
| [13] | LUO Yuanze, DAI Mengnan, LI Meng, YU Yangxiao, WANG Jiannan. Application of silk fibroin-based biomaterials for drug delivery [J]. Journal of Textile Research, 2023, 44(09): 213-222. |
| [14] | DI Chunqiu, GUO Jing, GUAN Fucheng, XIANG Yulong, SHAN Jicheng. Preparation and characterization of phase change fibers of bimetal ion crosslinked alginate composites [J]. Journal of Textile Research, 2023, 44(05): 54-62. |
| [15] | LIU Hao, MA Wanbin, LUAN Yiming, ZHOU Lan, SHAO Jianzhong, LIU Guojin. Preparation and properties of structural colored carbon fiber/polyester blended yarns based on photonic crystals [J]. Journal of Textile Research, 2023, 44(02): 159-167. |
|
||