Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 69-76.doi: 10.13475/j.fzxb.20181201008
• Textile Engineering • Previous Articles Next Articles
JIN Shoufeng1(), LIN Qiangqiang1, MA Qiurui2, ZHANG Hao1
CLC Number:
[1] | 孙艳, 郭娟琛, 杨建忠. 毛织物视觉风格研究[J]. 毛纺科技, 2008(12):37-40. |
SUN Yan, GUO Juanchen, YANG Jianzhong. Study on the visual style of worsted fabrics[J]. Wool Textile Journal, 2008(12):37-40. | |
[2] | 陈慧. 毛纺面料特性对服装设计的影响[J]. 毛纺科技, 2016(8):48-50. |
CHEN Hui. Influence of clothing design of characteristics of wool fabric[J]. Wool Textile Journal, 2016(8):48-50. | |
[3] | MAK K L, PENG P, YIU K F C. Fabric defect detection using multi-level tuned-matched Gabor filter[J]. Journal of Industrial and Management Optimization, 2012,8(2):325-341. |
[4] |
JING J F, ZANG H H, LI P F, et al. Fabric defect detection using Gabor filters and defect classification based on LBP and Tamura method[J]. Journal of the Textile Institute, 2013,104(1):18-27.
doi: 10.1080/00405000.2012.692940 |
[5] | 李春雷, 高广帅, 刘洲峰, 等. 应用方向梯度直方图和低秩分解的织物疵点检测算法[J]. 纺织学报, 2017,38(3):149-154. |
LI Chunlei, GAO Guangshuai, LIU Zhoufeng, et al. Fabric defect detection algorithm based on histogram of oriented gradient and low-rank decomposition[J]. Journal of Textile Research, 2017,38(3):149-154. | |
[6] | 杨曼, 李仁忠, 刘阳阳, 等. 基于改进迭代匹配滤波的织物疵点检测[J]. 西安工程大学学报, 2017,31(3):383-389. |
YANG Man, LI Renzhong, LIU Yangyang, et al. Fabric defect detection based on improved iterative match filter algorithm[J]. Journal of Xi'an Polytechnic University, 2017,31(3):383-389. | |
[7] | 何峰, 周亚同, 赵翔宇, 等. 纹理织物疵点窗口跳步形态学法检测[J]. 纺织学报, 2017,38(10):124-131. |
HE Feng, ZHOU Yatong, ZHAO Xiangyu, et al. Textured fabric defect detection based on windowedhop-step morphological algorithm[J]. Journal of Textile Research, 2017,38(10):124-131. | |
[8] | KIM S M, PPAR C K. Evaluation of fabric pilling using hybrid imaging methods[J]. Fibers and Polymers, 2006,7(1):71-89. |
[9] | 汪亚明, 崔新辉, 韩永华. 基于小波变换及Gabor滤波的起毛起球图像分割[J]. 丝绸, 2016,53(3):37-40. |
WANG Yaming, CUI Xinhui, HAN Yonghua. Fabric pilling image segmentation based on wavelet transform and Gabor filter[J]. Journal of Silk, 2016,53(5):37-40. | |
[10] | 周圆圆, 潘如如, 高卫东, 等. 基于标准样照与图像分析的织物起毛起球评等方法[J]. 纺织学报, 2010,31(10):29-33. |
ZHOU Yuanyuan, PAN Ruru, GAO Weidong, et al. Evaluation of fabric pilling based on standard images and image analysis[J]. Journal of Textile Research, 2010,31(10):29-33. | |
[11] | 杨松林, 马帅, 丁朝鹏, 等. 应用机器视觉的织物表面绒毛率测试系统[J]. 纺织学报, 2017,38(6):118-123. |
YANG Songlin, MA Shuai, DING Zhaopeng, et al. Fabric surface fluff rate detecting system based on machine vision[J]. Journal of Textile Research, 2017,38(6):118-123. | |
[12] | 张恒, 张欣, 贺兴时. 应用BP神经网络估算服装铺料长度[J]. 纺织学报, 2009,30(5):109-113. |
ZHANG Heng, ZHANG Xin, HE Xingshi. Using BP neural network to predict the length of garment marking[J]. Journal of Textile Research, 2009,30(5):109-113. | |
[13] | 刘为敏, 谢红. BP神经网络下的智能化合体服装样板生成[J]. 纺织学报, 2018,39(7):116-121. |
LIU Weimin, XIE Hong. Generation of intelligent fitting pattern based on BP neural network[J]. Journal of Textile Research, 2018,39(7):116-121. | |
[14] |
ZHOU H, DING W F, LI Z, et al. Predicting the grinding force of titanium matrix composites using the genetic algorithm optimizing back-propagation neural network model[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019,233(4):1157-1167.
doi: 10.1177/0954405418780166 |
[15] | ZHANG R, QIANG L, TAO J, et al. Data driven modeling using an optimal principle component analysis based neural network and its application to a nonlinear coke furnace[J]. Industrial & Engineering Chemistry Research, 2018,57(18):6344-6352. |
[16] |
NICOLA G D, COCCIA G, PIERANTOZZI M, et al. Artificial neural network for the second virial coefficient of organic and inorganic compounds: an ANN for B of organic and inorganic compounds[J]. Chemical Engineering Communications, 2018,205(8):1077-1095.
doi: 10.1080/00986445.2018.1433664 |
[17] | 袁冰清, 程功, 郑柳刚. BP神经网络基本原理[J]. 数字通信世界, 2018(8):28-29. |
YUAN Bingqing, CHENG Gong, ZHENG Liugang. Basic principle of BP neural networks[J]. Digital Communication World, 2018(8):28-29. | |
[18] |
ZIEGLER J C, MONTANT M, BRIESEMEISTER B B, et al. Do Words stink? neural reuse as a principle for understanding emotions in reading[J]. Journal of Cognitive Neuroscience, 2018,30(7):1023-1032.
doi: 10.1162/jocn_a_01268 pmid: 29668395 |
[19] | LEI X, ZHEN Z, SHENG Y, et al. Modeling and simulation of coal gas concentration prediction based on the BP neural network[J]. International Symposium on Information Engineering & Electronic Commerce, 2011(3):562-565. |
[20] | 温宗周, 刘现华. 基于BP算法的含沙量预测模型研究[J]. 西安工程大学学报, 2015,29(5):600-605. |
WEN Zongzhou, LIU Xianhua. Study on prediction model of sediment concentrationbased on BP algorithm[J]. Journal of Xi'an Polytechnic University, 2015,29(5):600-605. |
[1] | ZHU Shigen, YANG Hongxian, BAI Yunfeng, DING Hao, ZHU Qiaolian. Investigation on automatic deformation inspection system of long and thin parts with hooks [J]. Journal of Textile Research, 2020, 41(10): 158-163. |
[2] | ZHANG Xiaoxia, LIU Fengkun, MAI Wei, MA Chongqi. Prediction of loom efficiency based on BP neural network and its improved algorithm [J]. Journal of Textile Research, 2020, 41(08): 121-127. |
[3] | ZHANG Jianxin, LI Qi. Online cheese package yarn density detection system based on machine vision [J]. Journal of Textile Research, 2020, 41(06): 141-146. |
[4] | DONG Chaoqun, DU Yuhong, REN Weijia, ZHAO Di. Research progress in optical imaging technology for detecting foreign fibers in cotton [J]. Journal of Textile Research, 2020, 41(06): 183-189. |
[5] | LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57. |
[6] | WANG Wensheng, LI Tianjian, RAN Yuchen, LU Ying, HUANG Min. Method for position detection of cheese yarn rod [J]. Journal of Textile Research, 2020, 41(03): 160-167. |
[7] | JING Junfeng, ZHANG Junyang, ZHANG Huanhuan, SU Zebin. Defect detection on surface of draw texturing yarn packages in gradient space [J]. Journal of Textile Research, 2020, 41(02): 44-51. |
[8] | WANG Xiaohui, LIU Yuegang, MENG Zhuo, SUN Yize. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network [J]. Journal of Textile Research, 2019, 40(11): 168-174. |
[9] | ZHOU Jie, MA Qiurui. Prediction of relationship between shoulder strap attribute and breast amplitude of sports bra by BP neural network [J]. Journal of Textile Research, 2019, 40(09): 186-191. |
[10] | SUN Weihong, RUAN Mianjiang, SHAO Tiefeng, LIANG Man. Detection method of cohesive performance of raw silk based on machine vision [J]. Journal of Textile Research, 2019, 40(08): 164-168. |
[11] | JING Junfeng, ZHANG Xingxing. Fiber glass bobbin yarn hairiness detection based on machine vision [J]. Journal of Textile Research, 2019, 40(05): 157-162. |
[12] | ZHOU Jie, MA Qiurui. Application of BP neural network in prediction of shapewear pressure [J]. Journal of Textile Research, 2019, 40(04): 111-116. |
[13] | XU Yang, ZHU Zhichao, SHENG Xiaowei, YU Zhiqi, SUN Yize. Improvement recognition method of vamp's feature points based on machine vision [J]. Journal of Textile Research, 2019, 40(03): 168-174. |
[14] | JING Junfeng, GUO Gen. Yarn packages hairiness detection based on machine vision [J]. Journal of Textile Research, 2019, 40(01): 147-152. |
[15] | ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network [J]. Journal of Textile Research, 2019, 40(01): 52-56. |
|