Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (05): 30-37.doi: 10.13475/j.fzxb.20190702208

• Fiber Materials • Previous Articles     Next Articles

Modification of aramid fiber with phosphorus acid and its effect on flammability and smoke suppression for rigid polyurethane foams

XU Daifang()   

  1. College of Design, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • Received:2019-07-13 Revised:2020-02-07 Online:2020-05-15 Published:2020-06-02

Abstract:

In order to improve the flame retardant properties of polyurethane foams, aramid fiber (AF) modified by phosphoric acid was added to the rigid polyurethane foams. Oxygen index, smoke density meter, cone calorimeter, and thermogravimetric analyzer were used to characterize the flame retardancy, fire behavior, thermal stability and mechanical properties of the rigid polyurethane foams and flame-retardant rigid polyurethane foams. The results show that the polyurethane foams containing modified AF (MAF) have better flame retardant, smoke suppression and mechanical properties than the polyurethane foams containing AF. Compared with the pure polyurethane foams, the LOI for the polyurethane foams containing 5% content of MAF is enhanced by 15.8%, max smoke density, peak heat release rate, total heat release, peak smoke production rate and total smoke production release values are decreased by 25%, 25.3%, 10%, 35.7%, 47.3% respectively. MAF can improve the thermal stability of the polyurethane foams, and the residual mass at 700 ℃ is 14.5%, which is more than that of pure polyurethane foam.

Key words: rigid polyurethane foam, aramid fiber, modification by phosphoric acid, flammability, smoke suppression property

CLC Number: 

  • TQ328.3

Tab.1

Formulations of flame-retardant rigid polyurethane foams%"

样品
名称
聚醚多元醇
4110 质量分数
有机硅油
质量分数
辛酸亚锡
质量分数
三亚乙基二胺
质量分数
一氟二氯乙烷
质量分数
多苯基多亚甲基多
异氰酸酯质量分数
AF质量
分数
MAF质量
分数
RPUF 100 1.5 0.2~0.3 0.2~0.3 25 100
PU/AF 100 1.5 0.2~0.3 0.2~0.3 25 100 5
PU/MAF 100 1.5 0.2~0.3 0.2~0.3 25 100 5

Fig.1

Infrared spectrum analysis of aramid fiber and modified aramid fiber"

Fig.2

XRD patterns of aramid fiber before and after modification(a)and flame-retardant rigid polyurethane foams(b)"

Fig.3

Max smoke density of rigid polyurethane foams before and after modification"

Tab.2

Smoke density results for rigid polyurethane foams"

样品名称 烟密度等级 最大烟密度/%
RPUF 15.02 27.78
PU/AF 14.51 24.12
PU/MAF 12.37 20.83

Fig.4

Heat release rate (a), total heat release(b), smoke production rate(c) and smoke production (d) curves of rigid polyurethane foams before and after modification"

Tab.3

Cone calorimeter data for rigid polyurethane foams before and after modification"

样品名称 热释放速率峰值/
(kW·m-2)
热释放量/
(MJ·m-2)
产烟速率峰值/
(m2·s-1)
产烟量/
(m2·m-2)
燃烧50 s时的
残炭率/%
RPUF 258.1 41.9 0.056 742.8 61.9
PU/AF 197.0 46.8 0.039 577.1 87.8
PU/MAF 192.8 37.7 0.036 391.6 88.4

Fig.5

Thermogravimetric analysis of samples. (a) TG curve; (b) DTG curve"

Fig.6

SEM images of residual char of rigid polyurethane foams before and after modification (×300)"

Tab.4

Elemental content of residual char%"

样品名称 C N O P
RPUF 67.05 16.43 16.22 0.00
PU/AF 48.80 27.72 22.44 0.00
PU/MAF 50.29 37.54 11.71 0.06

Tab.5

Density and compressive property for rigid polyurethane foams before and after modification"

样品名称 密度/
(kg·m-3)
压缩强度/
MPa
比强度/
(MPa·g-1·cm-3)
RPUF 49.1 0.16 3.16
PU/AF 50.5 0.44 8.71
PU/MAF 51.3 0.54 10.53
[1] ZATORSKI W, BRZOZOWSKI ZK, KOLBRECKI A. New developments in chemical modification of fire-safe rigid polyurethane foams[J]. Polymer Degradation Stability, 2008,93(11):2071-2076.
[2] LEVCHIK S V, WEIL E D. Thermal decomposition, combustion and fire-retardancy of polyurethanes: a review of the recent literature[J]. Polymer International, 2010,53(12):1901-1929.
[3] CHATTOPADHYAY D K, WEBSTER D C. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science, 2009,34(10):1068-1133.
[4] SONNENSCHEIN M F, WENDT B L. Design and formulation of soybean oil derived flexible polyurethane foams and their underlying polymer structure/property relationships[J]. Polymer, 2013,54(10):2511-2520.
[5] USTA N. Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter[J]. J Appl Polym Sci, 2012,124(4):3372-3382.
[6] KULESZA K, PIELICHOWSKI K. Thermal decomposition of bisphenol a-based polyetherurethanes blown with pentane: part II: influence of the novel NaH2PO4/NaHSO4 flame retardant system[J]. Journal of Analytical & Applied Pyrolysis, 2006,76(1):249-253.
[7] KONIG A, KROKE E. Flame retardancy working mechanism of methyl-DOPO and MPPP in flexible polyurethane foam[J]. Fire & Materials, 2012,36(1):1-15.
[8] CHEN M J, SHAO Z B, WANG X L, et al. Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant[J]. Ind Eng Chem Res, 2012,51(29):9769-9776.
[9] 宋艳, 许亮, 李锦春, 等. 新型磷氮型阻燃剂的制备及其阻燃聚氨酯泡沫塑料[J]. 复合材料学报, 2016,33(11):2461-2467.
SONG Yan, XU Liang, LI Jinchun, et al. Preparation of new phosphorus and nitrogen flame retardants and flame retardant polyurethane foam plastics[J]. Acta Materiae Compositae Sinica, 2016,33(11):2461-2467.
[10] 卢林刚, 徐晓楠, 王大为, 等. 新型无卤膨胀阻燃聚丙烯的制备及阻燃性能[J]. 复合材料学报, 2013,30(1):83-89.
LU Lingang, XU Xiaonan, WANG Dawei, et al. Preparation and flame retardant properties of new halogen-free expanded flame retardant polypropy-lene[J]. Acta Materiae Compositae Sinica, 2013,30(1):83-89.
[11] 邓婷婷, 张光先, 代方银, 等. 对位芳纶磷酸化表面改性[J]. 纺织学报, 2015,36(11):12-19.
DENG Tingting, ZHANG Guangxian, DAI Fangyin, et al. Surface modification of para-aramid fiber by phosphoric acid[J]. Journal of Textile Research, 2015,36(11):12-19.
[12] CHEN X, WANG W, JIAO C. A recycled environmental friendly flame retardant by modifying para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer[J]. J Hazard Mat, 2017,331:257-264.
[13] CIECIERSKA E, JURCZYK-KOWALSKA M, BAZARNIK P, et al. Flammability, mechanical properties and structure of rigid polyurethane foams with different types of carbon reinforcing materials[J]. Composite Structures, 2016,140:67-76.
[14] 温中印, 曹建鹏, 卞雷雷, 等. DMMP、TCPP与EG对硬质聚氨酯泡沫阻燃协同效应及机理探讨[J]. 塑料工业, 2016,44(4):111-115.
WEN Zhongxin, CAO Jianpeng, BIAN Leilei, et al. Synergistic effect and mechanism of DMMP, TCPP and EG on flame retardant of rigid polyurethane foam[J]. Plastics Industry, 2016,44(4):111-115.
[15] XU W, LIU L, WANG S, et al. Synergistic effect of expandable graphite and aluminum hypophosphite on flame-retardant properties of rigid polyurethane foam[J]. Journal of Applied Polymer Science, 2015,132(47). DOI: 10.1002/APP.42842.
[16] 卢林刚, 陈英辉, 赵瑾, 等. DOPOMPC-APP-MWCNTs协同阻燃环氧树脂的制备[J]. 复合材料学报, 2015,32(1):101-107.
LU Lingang, CHEN Yinghui, ZHAO Jin, et al. Preparation of DOPOMPC-APP-MWCNTs as a synergistic flame retardant epoxy resin[J]. Acta Materiae Compositae Sinica, 2015,32(1):101-107.
[17] AFROUGHSABET V, BIOLZI L, OZBAKKALOGLU T. High-performance fiber-reinforced concrete: a review[J]. Journal of Materials Science, 2016,51(14):6517-6551.
[18] ZHANG C G, WANG H L, QIANG L I, et al. Preparation of new insulation formula of aramid fiber and NBR system[J]. Journal of Solid Rocket Technology, 2008,31(6):635-641.
[19] AKATO K, BHAT G. 10-High performance fibers from aramid polymers[J]. Structure and Properties of High-Performance Fibers, 2017,15:245-266.
[20] 许黛芳, 俞科静, 钱坤, 等. 芳纶短纤和浆粕增强聚氨酯泡沫的结构和性能研究[J]. 宇航材料工艺, 2018(2):29-34.
XU Daifang, YU Kejing, QIAN Kun, et al. Microstructure and properties of aramid-fiber and aramid-pulp reinforced rigid polyurethane foams[J]. Aerospace Materials Technology, 2018(2):29-34.
[21] CHEN J, ZHU Y, NI Q, et al. Surface modification and characterization of aramid fibers with hybrid coating[J]. Applied Surface Science, 2014,321:103-108.
[22] GU R, YU J, HU C, et al. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure[J]. Applied Surface Science, 2012,258(24):10168-10174.
[23] XI Min, LI Yuliang, SHANG Shuyong. Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line process-ing[J]. Surface & Coatings Technology, 2008,202(24):6029-6033.
[24] XU Daifang, YU Kejing, QIAN Kun. Effect of tris(1-chloro-2-propyl)phosphate and modified aramid fiber on cellular structure, thermal stability and flammability of rigid polyurethane foams[J]. Polymer Degradation & Stability, 2017,144:207-220.
[25] HOOSHANGI Z, FEGHHI S A H, SHEIKH N. The effect of electron-beam irradiation and halogen-free flame retardants on properties of poly butylene terephthalate[J]. Radiation Physics and Chemistry, 2015,108:54-59.
[26] BIAN X C, TANG J H, LI Z M, et al. Dependence of flame-retardant properties on density of expandable graphite filled rigid polyurethane foam[J]. J Appl Polym Sci, 2007,104(5):3347-3355.
[27] YANG H, WANG X, SONG L, et al. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams[J]. Polymers for Advanced Technologies, 2015,25(9):1034-1043.
[28] LEI L, ZHENGZHOU W. Synergistic effect of nano magnesium amino-tris-(methylenephosphonate) and expandable graphite on improving flame retardant, mechanical and thermal insulating properties of rigid polyurethane foam[J]. Materials Chemistry and Physics, 2018,219:318-327.
[29] HU X, CHENG W, NIE W, et al. Flame retardant, thermal, and mechanical properties of glass fiber/nanoclay reinforced phenol-urea-formaldehyde foam[J]. Polymer Composites, 2016,37:2323-2332.
doi: 10.1002/pc.23411
[30] LI X, WANG Z, WU L. Preparation of a silica nanospheres/graphene oxide hybrid and its application in phenolic foams with improved mechanical strengths, friability and flame retardancy[J]. RSC Adv, 2015(5):99907-99913.
[1] ZHUANG Qun, ZHANG Fei, DU Zhaofang, JIANG Hua. Preparation of modified aramid fiber and epoxy resin composites and stab resistance thereof [J]. Journal of Textile Research, 2019, 40(12): 98-103.
[2] MIAO Te, ZHANG Ruquan, FENG Yang. Influence of nano-foam finishing on properties of aramid filter materials [J]. Journal of Textile Research, 2019, 40(09): 108-113.
[3] . Cold plasma treatment and aging properties of aramid fiber [J]. Journal of Textile Research, 2018, 39(11): 73-78.
[4] . Properties of pre-oxidized polyacrylonitrile / aramid fiber needled filters [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 61-66.
[5] . Preparation and properties of high temperature resistant ultrafiltration aramid nanofiber/PPS composite material [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(7): 1-4.
[6] SONG Cui-Yan, SONG Xi-Quan, DENG Zhao-Liang. Technology status and development trend of m-aramid fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 125-128.
[7] LI Wen-Tao, YAO Shu-Huan, PENG Shu-Ping, WU Meng, ZHANG Chao-Bo, ZHANG Zai-Xing. Thermal oxidizing aging properties of modified aromatic polyoxadiazoles fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 151-154.
[8] WANG Chunxia;DU Mei;QIU Yiping. Influence of moisture regain on effects of atmospheric pressure plasma treatment [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(3): 36-41.
[9] LIANG Ping;WANG Lan;LIN Junxiong. Acting mechanism of carrier Cindye Dnk on aramid fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(2): 21-25.
[10] QIAN Kun;CAO Haijian;SHENG Dongxiao;ZHUANG Suyu. Influence of low temperature plasma treatment on surface performance of aramid fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(10): 10-13.
[11] YAN Zhiyun;SHI Hongqiao;LIU Anhua;JIA Demin. X-ray photoelectron spectroscopic analysis of surface modification of aramid fiber by low temperature plasma [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(8): 19-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!