Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 160-165.doi: 10.13475/j.fzxb.20201102906

• Machinery & Accessories • Previous Articles     Next Articles

Dynamic analyses on nipper pendulum shaft in cotton combers

LI Jinjian1, REN Jiazhi1(), LIANG Zhuo1, JIA Guoxin2   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. School of Textiles, Henan University of Engineering, Zhengzhou, Henan 451191, China
  • Received:2020-11-13 Revised:2021-01-27 Online:2021-06-15 Published:2021-06-28
  • Contact: REN Jiazhi E-mail:rjzhi@163.com

Abstract:

In order to understand driving torque of the nipper pendulum shaft of the cotton spinning comber, the carding force, separate drafting force, inertia force of the nipper mechanism, inertia force of the nipper pendulum shaft were analyzed and their relationships with the driving torque of the nipper pendulum shaft was investigated. Mathematical models for the drag torque and the driving torque in the nipper pendulum shaft were established, and the ADAMS software was used to simulate the variation mechanisms of the drag torque and driving torque of the nipper pendulum shaft during a working cycle. The results show that the driving torque of the nipper pendulum is mainly determined by the torque of inertial force in the nipper mechanism for the nipper pendulum shaft. The peak and valley values of the driving torque curve of the nipper pendulum shaft are increased rapidly with the increase of comber speed, and the influence of the inertial force in the nipper mechanism on the driving torque of the nipper pendulum shaft becomes more significant. When the speed of the comber is increased from 300 to 500 nippers/min, the peak value of the driving torque curve is increased by 211%, and the ratio of the peak inertia torque of the nipper mechanism to the peak driving torque of the nipper pendulum shaft is increased from 63% to 74.1%.

Key words: comber, nipper pendulum shaft, nipper mechanism, carding force, dynamics

CLC Number: 

  • TS112.2

Fig.1

Nipper mechanism of comber"

Fig.2

Cylinder carding stage"

Fig.3

Separation and combination stage"

Fig.4

Torque of carding force on nipper pendulum shaft"

Fig.5

Torque of drafting force on nipper pendulum shaft"

Fig.6

Variation curve of drag torque for nipper pendulum shaft"

Fig.7

Torque model of driving torque on nipper"

Tab.1

Characteristic parameters of drag torque of nipper pendulum shaft of a working unit of a comber"

力矩 谷值/(N·m) 谷值/分度 峰值/(N·m) 峰值/分度
M1 0 24~35/5~24 0.87 38
M2 0 30~18 2.76 23.8
M3 -7.12 27.4 4.97 37
M4 -1.98 27.4 1.98 37
M -8.9 28.4 7.80 37

Fig.8

Effect of velocity on driving torque"

Tab.2

Characteristic parameters of total driving torque and drag torque of comber nipper pendulum shaft"

速度/
(钳次·min-1)
力矩 谷值/
(N·m)
谷值/
分度
峰值/
(N·m)
峰值/
分度
300 M 0 -71.23 28.4 62.40 37
M 11 0 24~35/5~24 6.96 38
M 21 0 30~18 22.03 23.8
M 31 -56.92 27.4 39.78 37
M 41 -15.85 27.4 15.85 37
400 M 0 -118.18 28.4 119.25 37
M 11 0 24~35/5~24 6.96 38
M 21 0 30~18 22.03 23.8
M 31 -91.92 27.4 84.36 37
M 41 -28.17 27.4 28.17 37
500 M 0 -173.75 28.4 194.04 37
M 11 0 24~35/5~24 6.96 38
M 21 0 30~18 22.03 23.8
M 31 -132.08 27.4 143.71 37
M 41 -44.02 27.4 44.02 37

Tab.3

Ratio of peak torque of drag to peak torque of drive%"

速度/(钳次·min-1) M 11 / M 0 M 21 / M 0 M 31 / M 0 M 41 / M 0
300 11.2 35.3 63.8 25.4
400 5.8 18.5 70.8 23.6
500 3.6 11.4 74.1 22.7
[1] 任家智. E7/5型精梳机钳板传动机构分析[J]. 棉纺织技术, 1998, 26(6):16-20.
REN Jiazhi. Analysis of nipper driving mechanism of E7/5 comber[J]. Cotton Textile Technology, 1998, 26(6):16-20.
[2] 李晶. 精梳机钳板机构的运动学分析[J]. 纺织机械, 2012(4):17-18.
LI Jing. Kinematics analysis of nipper mechanism in combing machine[J]. Textile Machinery, 2012(4):17-18.
[3] 任家智, 郁崇文. E7/6型精梳机曲柄半径对工艺性能的影响[J]. 纺织学报, 2004, 25(6):32-34.
RNE Jiazhi, YU Chongwen. Influence of crank radius of E7/6 comber on process performance[J]. Journal of Textile Research, 2004, 25(6):32-34.
[4] 贾国欣, 杨明霞, 任家智, 等. FA266型精梳机钳板机构及工艺参数运动学建模[J]. 纺织机械, 2009 (3):17-23.
JIA Guoxin, YANG Mingxia, REN Jiazhi, et al. Kinematic modeling of the nipper mechanism and process parameters of FA266 comber[J]. Textile Machinery, 2009 (3):17-23.
[5] 贾国欣, 杨明霞, 任家智, 等. 精梳机钳板机构的平衡与实验[J]. 河南工程学院学报, 2015(2),1-4.
JIA Guoxin, YANG Mingxia, REN Jiazhi, et al. Balance and experiment of nipper mechanism of combing machine[J]. Journal of Henan Institute of Engineering, 2015(2):1-4.
[6] 任家智, 贾国欣. 高效棉纺精梳关键技术[M]. 北京: 中国纺织出版社, 2017:19-28.
REN Jiazhi, JIA Guoxin. Key technology of high efficiency cotton spinning combing[M]. Beijing: China Textile & Apparel Press, 2017:19-28.
[7] 任家智. 纺纱工艺学[M]. 上海: 东华大学出版社, 2010:61-72.
REN Jiazhi. Technology[M]. Shanghai: Donghua University Press, 2010:61-72.
[8] 白予生. 精梳机锡林作用力初探[J]. 棉纺织技术, 1984, 12(1):2-7.
BAI Yusheng. Preliminary study on cylinder acting force of comber[J]. Cotton Textile Technology, 1984, 12(1):2-7.
[9] 徐春叶, 王树惠. 精梳机梳理力的动态测试[J]. 纺织学报, 1993, 14(11):8-11.
XU Chunye, WANG Shuhui. Dynamic test of carding force of comber[J]. Journal of Textile Research, 1993, 14(11):8-11.
[10] 哈尔滨工业大学理论力学教研室. 理论力学[M]. 7版. 北京: 高等教育出版社, 2009:6-33.
Department of Theoretical Mechanics, Harbin Institute of Technology. Theoretical mechanics[M]. 7th ed. Beijing: Higher Education Press, 2009:6-33.
[11] 任家智, 巫鳌飞, 贾国欣, 等. 棉纺精梳机分离罗拉动力学分析[J]. 棉纺织技术, 2020, 48(4):18-24.
REN Jiazhi, WU Aofei, JIA Guoxin, et al. Dynamic analysis of separating roller of cotton comber[J]. Cotton Textile Technology, 2020, 48(4):18-24.
[12] 刘鹏展, 贾国欣, 任家智. 精梳机钳板机构的振动分析[J]. 纺织学报, 2015, 36(9):108-113.
LIU Pengzhan, JIA Guoxin, REN Jiazhi, et al. Simulation and vibration of combing nipper mecha-nism[J]. Journal of Textile Research, 2015, 36(9):108-113.
[1] XU Baolü, WU Wei, ZHONG Yi, XU Hong, MAO Zhiping. Simulation study on effect of organic solvents on dispersion and hydrolytic stability of liquid reactive dyes [J]. Journal of Textile Research, 2021, 42(02): 113-121.
[2] WANG Chunyi, WU Wei, WANG Jian, XU Hong, MAO Zhiping. Molecular dynamics simulation of solubility of C.I. Disperse Brown 19 in supercritical CO2 and water [J]. Journal of Textile Research, 2020, 41(09): 95-101.
[3] SONG Huijun, ZHAI Yali, CHAO Yiyuan, ZHU Chaoyu. Silk fabric dyed with gardenia blue pigment [J]. Journal of Textile Research, 2020, 41(06): 81-85.
[4] ZHANG Wei, MAO Qingkai, ZHU Peng, CHAI Xiong, LI Huijun. Kinetic and thermodynamic of reactive dye study on silk fabric modification in ethanol/water system [J]. Journal of Textile Research, 2020, 41(06): 86-92.
[5] WU Wei, CHEN Xiaowen, ZHONG Yi, XU Hong, MAO Zhiping. Role of sodium sulfate in low add-on pad-cure-steam reactive dyeing process [J]. Journal of Textile Research, 2020, 41(05): 85-93.
[6] WANG Xiaochun, ZHANG Jianfei, ZHANG Liping, WANG Nana, YAN Jinlong, ZHAO Guoliang. Influence of extreme hydrophobic dye structure on dyeing properties of ultrahigh molecular weight polyethylene fibers [J]. Journal of Textile Research, 2020, 41(03): 78-83.
[7] XIAO Qi, WANG Rui, SUN Hongyu, FANG Shu, LI Danyang. Research progress on theoretical models of mechanisms of fuzzing and pilling [J]. Journal of Textile Research, 2020, 41(02): 172-178.
[8] YANG Haipeng, LI Xinrong, LÜ Pengfei, WANG Zhenyu. Detaching roller drive mechanism of a comber based on hybrid-driven [J]. Journal of Textile Research, 2019, 40(04): 122-128.
[9] . Dyeing properties of difluorenylidene quinoidal thiophene dye on cotton fabric [J]. Journal of Textile Research, 2018, 39(10): 81-85.
[10] . Dynamic analysis and optimization of rotary dobby lifting comprehensive mechanism [J]. Journal of Textile Research, 2018, 39(09): 160-168.
[11] . Dyeing peoperties of ultrahigh molecular weight polyethylene fibers with disperse dye [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 84-90.
[12] . Theoretical study of influence of spiral angle of licker-in on carding quality [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 131-135.
[13] . Motion simulation analysis and track optimal design for three-dimensional braiding machine [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 134-139.
[14] . Influence of peoduct development process of fast fashion brand on time performance [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 113-119.
[15] . Nipper opening-closing time of cotton comber [J]. Journal of Textile Research, 2015, 36(07): 121-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!