Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 1-14.doi: 10.13475/j.fzxb.20211108514

• Invited Paper •     Next Articles

Biomimetic structural coloration of textiles

WANG Xiaohui, LIU Guojin, SHAO Jianzhong()   

  1. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-11-27 Revised:2021-12-02 Online:2021-12-15 Published:2021-12-29
  • Contact: SHAO Jianzhong E-mail:jshao@zstu.edu.cn

Abstract:

Structural coloration is a physical coloration technology producing colorful materials without using chemical colorants (dyes and pigments), and thus the research and application of structural coloration should be a positive action to facilitate the development of eco-textiles. This paper briefly introduces the basic conceptions and principles of structural coloration, and emphatically introduces the main technological approaches to structural coloration of textiles and the challenges to industrialized application, and also puts forward some ideas and strategies to resolve the problems existed currently. Also, it briefly introduces the application and potential application of biomimetic structural coloration in eco-textiles, fashion textiles and smart textiles, and prospect the future development of biomimetic structural coloration of textiles. The coexistence and combination of both pigmentary coloration and structural coloration will be a promise route for the progress of future textile coloration.

Key words: structural coloration, self-assembly, biomimetic textiles, structural stability, large-scale fabrication, eco-textile, fashion textile, smart textile

CLC Number: 

  • TS193.5

Fig.1

Large-scale fabrication of structurally colored photonic crystal film. (a) Hot-pressed shear induced method; (b) Bending-induced oscillatory shear method"

Fig.2

Large-scale structural coloration of textiles by shear-induced assembly of liquid photonic crystals"

Fig.3

Schematic diagram of inkjet printing method and patterned photonic crystals on fabric surface"

Fig.4

Schematic diagram of screen printing method"

Fig.5

Schematic diagrams of fabricating photonic crystals with structural color by spraying method. (a) Preparation of short range ordered but long range disordered photonic crystals; (b) Preparation of long range ordered photonic crystals and rainbow effect"

Fig.6

Schematic diagram of enhancing stability of photonic crystals by co-sedimentation self-assembly"

Fig.7

High structural stability photonic crystals based on surface supported encapsulation method. (a) Schematic diagram of surface supported encapsulation; (b) Presentation of structural stability"

Fig.8

Fabrications of hard-core/soft-shell nanospheres and flexible photonic crystals film and structural stability"

Fig.9

Flexible structural color film based on immobilization of liquid photonic crystals"

Fig.10

Picture of pilot production line and large-scale photonic crystal structurally colored fabrics"

Fig.11

Schematic diagram of preparation of volatile-compound responsive photonic crystal patterns and color changes"

Fig.12

Schematic diagram of preparation of photonic crystal pattern and its application in banknote security"

[1] KUEHNI R. Color: an introduction to practice and principles[M]. 3rd ed. Hoboken: John Wiley & Sons, Inc, 2012:23-36.
[2] KINOSHITA S. Structural colors in the realm of nature[M]. Singapore: World Scientific Publishing Co Pte Ltd, 2008: 1-42.
[3] TILLEY R. Colour and the optical properties of mate-rials[M]. 3rd ed. Hoboken: John Wiley & Sons, Inc, 2020: 1-265.
[4] 裴广晨, 王京霞, 江雷. 仿生光子晶体纤维的研究进展[J]. 化学学报, 2021, 79:414-429.
doi: 10.6023/A20120556
PEI Guangchen, WANG Jingxia, JIANG Lei. Research progress of bioinspired photonic crystal fibers[J]. Acta Chimica Sinica, 2021, 79:414-429.
[5] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20):2059.
doi: 10.1103/PhysRevLett.58.2059
[6] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23):2486.
doi: 10.1103/PhysRevLett.58.2486
[7] HOFEREK L, MISTRIK J, TRIVEDI R, et al. Multilayer and functionally gradient films of plasma polymers intended as compatible interlayers for hybrid materials[J]. Surface & Coatings Technology, 2014, 254:49-53.
doi: 10.1016/j.surfcoat.2014.05.059
[8] SUN X M, ZHANG J, LU X, et al. Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes[J]. Angewandte Chemie, 2015, 54:3630.
[9] KOU D H, MA W, ZHANG S F, et al. High-performance and multifunctional colorimetric humidity sensors based on mesoporous photonic crystals and nanogels[J]. ACS Applied Materials & Interfaces, 2018, 10(48):41645-41654.
[10] PENG L H, JIANG S X, GUO R, et al. IR protection property and color performance of TiO2/Cu/TiO2 coated polyester fabrics[J]. Journal of Materials Science: Materials in Electronics, 2018, 29:16188-16198.
doi: 10.1007/s10854-018-9708-6
[11] YUAN X H, YE Y J, LIAN M, et al. Structural coloration of polyester fabrics coated with Al/TiO2 composite films and their anti-ultraviolet properties[J]. Materials, 2018, 11(6):1011.
doi: 10.3390/ma11061011
[12] NIU W B, ZHANG L L, WANG Y P, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management[J]. ACS Applied Materials & Interfaces, 2019, 11(35):32261-32268.
[13] CHEN F X, YANG H Y, LI K, et al. Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability[J]. ACS Nano 2017, 11(10):10330-10336.
doi: 10.1021/acsnano.7b05139
[14] JIA Y R, ZHANG Y, ZHOU Q B, et al. Structural colors of the SiO2/polyethyleneimine thin films on poly(ethylene terephthalate) substrates[J]. Thin Solid Films, 2014, 569:10-16.
doi: 10.1016/j.tsf.2014.08.022
[15] TIEN J, TERFORT A, WHITESIDES G M. Microfabrication through electrostatic self-assembly[J]. Langmuir, 1997, 13(20):5349-5355.
doi: 10.1021/la970454i
[16] 张以忱. 真空镀膜技术与设备[M]. 北京: 冶金工业出版社, 2014: 33-34.
ZHANG Yichen. Vacuum coating technology and equip-ment[M]. Beijing: Metallurgical Industry Press, 2014: 33-34.
[17] 田民波. 溅射镀膜的特点和应用:一[J]. 稀有金属, 1987 (1):37-42.
TIAN Minbo. Characteristics and application of sputtering coating :Ⅰ[J]. Rare Metal, 1987 (1):37-42.
[18] YUAN X H, XU W Z, HUANG F L, et al. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering[J]. Applied Surface Science, 2016, 390(30):863-869.
doi: 10.1016/j.apsusc.2016.08.164
[19] SUBRAMANIAN B, PRIYA K A, RAJAN S T, et al. Antimicrobial activity of sputtered nanocrystalline CuO impregnated fabrics[J]. Materials Letters, 2014, 128(1):1-4.
doi: 10.1016/j.matlet.2014.04.056
[20] YUAN X, XU W, HUANG F, et al. Structural colour of polyester fabric coated with Ag/TiO2 multilayer films[J]. Surface Engineering, 2017, 33(3):231-236.
doi: 10.1080/02670844.2016.1216264
[21] 叶丽华, 杜文琴. 结构色织物的光学性能[J]. 纺织学报, 2016, 37(8):83-88.
YE Lihua, DU Wenqin. Optical properties of structural colored fabrics[J]. Journal of Textile Research, 2016, 37(8):83-88.
[22] 刘明雪, 赵倩, 王晓辉, 等. 磁控溅射纳米膜与不同纺织基材的结合牢度[J]. 纺织学报, 2021, 42(2):135-141,147.
LIU Mingxue, ZHAO Qian, WANG Xiaohui, et al. Bonding fastness of magnetron sputtering nanofilms to different textile substrates[J]. Journal of Textile Research, 2021, 42(2):135-141,147.
[23] 刘明雪, 王晓辉, 赵倩, 等. 低温等离子体处理对纺织品磁控溅射镀膜的影响[J]. 丝绸, 2021, 58(2):1-6.
LIU Mingxue, WANG Xiaohui, ZHAO Qian, et al. Effect of low temperature plasma treatment on magnetron sputtering coating of textiles[J]. Journal of Silk, 2021, 58(2):1-6.
[24] 刘琼溪, 张欣, 余荣沾. 纳米生色技术的原理与优势[J]. 染整技术, 2019, 41(2):3-6.
LIU Qiongxi, ZHANG Xin, YU Rongzhan. The principle and advantage of nano color generation technology[J]. Textile Dyeing and Finishing Journal, 2019, 41(2):3-6.
[25] SHAH M A, CALVERT P, PATRA P, et al. Structural colors by ionic self-assembly[C]// Proceeding of AATCC Conference. North Carolina: American Association of Textile Chemists and Colorists, 2005.
[26] ZHUANG G Q, PING W, ZHANG Y, et al. Optical properties of silk fabrics with (SiO2/polyethyleneimine)n film fabricated by electrostatic self-assembly[J]. Textile Research Journal, 2016, 86(18):1914-1924.
doi: 10.1177/0040517515617424
[27] ZHANG Y, ZHUANG G Q, JIA Y R, et al. Structural coloration of polyester fabrics with electrostatic self-assembly of (SiO2/PEI)n[J]. Textile Research Journal, 2014, 85(8):785-794.
doi: 10.1177/0040517514555803
[28] JIA Y R, ZHANG Y, SHAO J Z, et al. Structural colors of the SiO2/polyethyleneimine thin films on poly(ethylene terephthalate) substrates[J]. Thin Solid Films, 2014, 569:10-16.
doi: 10.1016/j.tsf.2014.08.022
[29] 刘晓艳, 张洪波, 于伟东. 静电自组装方法制备结构色复合薄膜: 201210398626.3[P]. 2016-01-06.
LIU Xiaoyan, ZHANG Hongbo, YU Weidong. Structure color composite films were prepared by electrostatic self-assembly method: 201210398626.3[P]. 2016-01-06.
[30] CAMPBELL M, SHARP D N, HARRISON M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 2000, 404(6773):53-56.
doi: 10.1038/35003523
[31] AMOUZAD Mahdiraji G, CHOW D M, et al. Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study[J]. Fiber & Integrated Optics, 2014, 33(1/2):85-104.
[32] SUNG J H, LEE M W, CHOI C H, et al. Fabrication of a polymeric photonic crystal wavelength splitter using ultra violet embossing technology[J]. Microelectronic Engineering, 2007, 84(5-8):994-998.
doi: 10.1016/j.mee.2007.01.136
[33] LI Z W, WANG X J, YIN Y D. Multicolor photonic pigments for rotation-asymmetric mechanochromic devices[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202107398.
doi: 10.1002/adma.202107398
[34] WG A, MR B, HO A. Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum[J]. Applied Surface Science, 2016, 380:12-15.
doi: 10.1016/j.apsusc.2016.02.106
[35] LIU G J, ZHOU L, FAN Q G, et al. The vertical deposition self-assembly process and the formation mechanism of poly(styrene-co-methacrylic acid) photonic crystals on polyester fabrics[J]. Journal of Materials Science, 2016, 51(6):2859-2868.
doi: 10.1007/s10853-015-9594-8
[36] RUHL T, SPAHN P, HELLMANN G P. Artificial opals prepared by melt compression[J]. Polymer, 2003, 44(25):7625-7634.
doi: 10.1016/j.polymer.2003.09.047
[37] VIEL B, RUHL T, HELLMANN G P. Reversible deformation of opal elastomers[J]. Chemistry of Materials, 2007, 19(23):5673-5679.
doi: 10.1021/cm062582a
[38] FINLAYSON C E, SPAHN P, SNOSWELL D R E, et al. 3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing[J]. Advanced Materials, 2011, 23(13):1540-1544.
doi: 10.1002/adma.201003934
[39] FINLAYSON C E, BAUMBERG J J. Polymer opals as novel photonic materials[J]. Polymer International, 2013, 62(10):1403-1407.
doi: 10.1002/pi.4582
[40] PURSIANINEN O L J, BAUMBERG J J, WINKLER H, et al. Shear-induced organization in flexible polymer opals[J]. Advanced Materials, 2010, 20(8):1484.
doi: 10.1002/(ISSN)1521-4095
[41] ZHAO Q B, FINLAYSON C E, SNOSWELL D R, et al. Large-scale ordering of nanoparticles using viscoelastic shear processing[J]. Nature Communications, 2016, 7(1):1-10.
[42] SHEN X Q, WU P, SCHAFER C G, et al. Ultrafast assembly of nanoparticles to form smart polymeric photonic crystal films: a new platform for quick detection of solution compositions[J]. Nanoscale, 2019, 11(3):1253-1261.
doi: 10.1039/C8NR08544G
[43] LI H T, WU P, ZHAO G W, et al. Fabrication of industrial-level polymer photonic crystal films at ambient temperature based on uniform core/shell colloidal particles[J]. Journal of Colloid and Interface Science, 2021, 584:145-153.
doi: 10.1016/j.jcis.2020.09.084
[44] LI Y C, FAN Q S, WANG X H, et al. Shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of textiles[J]. Advanced Functional Materials, 2021, 31(19):2010746.
doi: 10.1002/adfm.v31.19
[45] LIU G J, ZHOU L, ZHANG G Q, et al. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology[J]. Materials & Design, 2016, 114:10-17.
[46] ZHOU C T, QI Y, ZHANG S F, et al. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing[J]. Dyes and Pigments, 2020, 176:108226.
doi: 10.1016/j.dyepig.2020.108226
[47] ZENG Q, DING C, LI Q S, et al. Rapid fabrication of robust, washable, self-healing superhydrophobic fabrics with non-iridescent structural color by facile spray coating[J]. RSC Advances, 2017, 7(14):8443-8452.
doi: 10.1039/C6RA26526J
[48] LI Y C, CHAI L Q, WANG X H, et al. Facile fabrication of amorphous photonic structures with non-iridescent and highly-stable structural color on textile substrates[J]. Materials, 2018, 11(12):2500.
doi: 10.3390/ma11122500
[49] WANG C, LIN X, SCHAFEI C G, et al. Spray synjournal of photonic crystal based automotive coatings with bright and angular-dependent structural colors[J]. Advanced Functional Materials, 2021, 31(9):2008601.
doi: 10.1002/adfm.v31.9
[50] FU G Q, ZHANG X Q, CHU X M, et al. Rapid fabrication of photonic crystal patterns with iridescent structural colors on textiles by spray coating[J]. Dyes and Pigments, 2021, 195:109747.
doi: 10.1016/j.dyepig.2021.109747
[51] CHAI L Q, ZHOU L, LIU G J, et al. Interface-gravity joint self-assembly behaviors of P(St-MAA) colloidal microspheres on polyester fabric substrates[J]. Journal of Materials Science, 2017, 52(9):5060-5071.
doi: 10.1007/s10853-016-0743-5
[52] LI Y C, ZHOU L, ZHANG G Q, et al. Study on the effects of the characteristics of textile substrates on the photonic crystal films and the related structural colors[J]. Surface & Coatings Technology, 2017, 319:267-276.
doi: 10.1016/j.surfcoat.2017.04.017
[53] ZHOU L, LI Y C, LIU G J, et al. Study on the correlations between the structural colors of photonic crystals and the base colors of textile fabric substrates[J]. Dyes and Pigments, 2016, 133:435-444.
doi: 10.1016/j.dyepig.2016.06.032
[54] WANG X H, LI Y C, ZHOU L, et al. Structural colouration of textiles with high colour contrast based on melanin-like nanospheres[J]. Dyes and Pigments, 2019, 169:36-44.
doi: 10.1016/j.dyepig.2019.05.006
[55] LI Y C, ZHOU L, LIU G J, et al. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates[J]. Applied Surface Science, 2018, 444:145-153.
doi: 10.1016/j.apsusc.2018.03.044
[56] MENG Y, TANG B T, XIU J H, et al. Simple fabrication of colloidal crystal structural color films with good mechanical stability and high hydrophobicity[J]. Dyes and Pigments, 2015, 123:420-426.
doi: 10.1016/j.dyepig.2015.08.022
[57] TIAN E T, CUI L Y, WANG J X, et al. Tough photonic crystals fabricated by photo-crosslinkage of latex spheres[J]. Macromolecular Rapid Communications, 2010, 30(7):509-514.
doi: 10.1002/marc.v30:7
[58] 陈苏, 朱志杰, 张静. 一种制备大面积不开裂胶体光子晶体膜的方法:201710225398.2[P]. 2017-04-07.
CHEN Su, ZHU Zhijie, ZHANG Jing. A method for preparing large area non-cracking colloidal photonic crystal film:201710225398.2[P]. 2017-04-07.
[59] CHU L, ZHANG X T, NIU W B, et al. Hollow silica opals/cellulose acetate nanocomposite films with structural colors for anti-counterfeiting of banknotes[J]. Journal of Materials Chemistry C, 2019, 7(24):7411-7417.
doi: 10.1039/C9TC01992H
[60] ZHONG K, LI J Q, LIU L W, et al. Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals[J]. Advanced Materials, 2018, 30(25):1707246.
doi: 10.1002/adma.v30.25
[61] LI Y C, WANG X H, HU M G, et al. Patterned SiO2/PUA inverse opal photonic crystals with high color saturation and tough mechanical strength[J]. Langmuir, 2019, 35(44):14282-14290.
doi: 10.1021/acs.langmuir.9b02485
[62] WANG X H, LI Y C, ZHAO Q, et al. High structural stability of photonic crystals on textile substrates, prepared via a surface-supported curing strategy[J]. ACS Applied Materials & Interfaces, 13(16):19221-19229.
[63] 王晓辉, 李义臣, 刘国金, 等. 柔性光子晶体结构生色膜的制备及其光学性质[J]. 纺织学报, 2021, 42(2):12-20.
WANG Xiaohui, LI Yichen, LIU Guojin, et al. Preparation and optical properties of flexible photonic crystal film for structural colors[J]. Journal of Textile Research, 2021, 42(2):12-20.
[64] 邵建中, 王晓辉, 李义臣, 等. 一种柔性光子晶体基元纳米微球及其制备方法: 201911112794.X[P]. 2019-11-14.
SHAO Jianzhong, WANG Xiaohui, LI Yichen, et al. The invention relates to flexible photonic crystal elemental nanospheres and a preparation method thereof: 201911112794.X [P]. 2019-11-14.
[65] 高益平, 李义臣, 王晓辉, 等. 基于液态光子晶体固定化的柔性结构生色膜[C]// 第十一届中国纺织学术年会论文集.北京:中国纺织工程学会, 2021:933-940.
GAO Yiping, LI Yichen, WANG Xiaohui, et al. Flexible structural color film based on immobilized liquid photonic crystal[C]// Proceeding of the 11th China Textile Academic Conference. Beijing: China Textile Engineering Society, 2021:933-940.
[66] 邵建中, 王晓辉, 唐族平, 等. 高稳定性高饱和度光子晶体结构生色织物的大面积制备方法: 202111437620.8[P]. 2021-11-26.
SHAO Jianzhong, WANG Xiaohui, TANG Zuping, et al. A preparation method for large-scale photonic crystals structurally colored fabrics with high stability and high saturation: 202111437620.8[P]. 2021-11-26.
[67] NOH H, LIEW S F, SARANATHAN V, et al. How non-iridescent colors are generated by quasi-ordered structures of bird feathers[J]. Advanced Materials, 2010, 22(26/27):2871-2880.
doi: 10.1002/adma.200903699
[68] TAKEOKA Y, HONDA M, SEKI T, et al. Structural colored liquid membrane without angle dependence[J]. ACS Applied Materials & Interfaces, 2009, 1(5):982-986.
[69] LI Q S, ZHANG Y F, SHI L, et al. Additive mixing and conformal coating of noniridescent structural colors with robust mechanical properties fabricated by atomization deposition[J]. ACS Nano, 2018, 12(4):3095-3102.
doi: 10.1021/acsnano.7b08259
[70] ZHANG Y F, DONG B Q, CHEN A, et al. Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility[J]. Advanced Materials, 2015, 27(32):4719-4724.
doi: 10.1002/adma.v27.32
[71] DROGUET B E, LIANG H L, FRKA P B, et al. Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments[J]. Nature Materials, 2021. DOI: 10.1038/s41563-021-01135-8.
doi: 10.1038/s41563-021-01135-8
[72] GE J P, YIN Y D. Responsive photonic crystals[J]. Angew Chem Int Ed Engl, 2011, 50(7):1492-1522.
doi: 10.1002/anie.200907091
[73] BAI L, XIE Z Y, WANG W, et al. Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing[J]. ACS Nano, 2014, 8(11):11094.
doi: 10.1021/nn504659p
[74] TIAN E T, WANG J X, ZHENG Y M, et al. Colorful humidity sensitive photonic crystal hydrogel[J]. Journal of Materials Chemistry, 2008, 18(10):1116-1122.
doi: 10.1039/b717368g
[75] LIAO J L, ZHU C, GAO B B, et al. Multiresponsive elastic colloidal crystals for reversible structural color patterns[J]. Advanced Functional Materials, 2019, 29(39):1902954.
doi: 10.1002/adfm.v29.39
[76] LEE H S, SHIM T S, HWANG H, et al. Colloidal photonic crystals toward structural color palettes for security materials[J]. Chemistry of Materials, 2013, 25(13):2684-2690.
doi: 10.1021/cm4012603
[77] DING T, CAO G, SCHAFER C G, et al. Revealing invisible photonic inscriptions: images from strain[J]. ACS Appl Mater Interfaces, 2015, 7(24):13497-13502.
doi: 10.1021/acsami.5b02768
[1] LIU Shuping, LI Liang, LIU Rangtong, HU Zedong, GENG Changjun. Flame retardant finishing of cotton fabric with tri-aminopropyl triethoxysilane [J]. Journal of Textile Research, 2021, 42(10): 107-114.
[2] LIN Wenjun, MIAO Xuhong. Application research progress of optical fiber in luminescent fabrics [J]. Journal of Textile Research, 2021, 42(07): 169-174.
[3] XU Jin, YANG Pengcheng, XIAO Yuan, XU Guangshen. Visual measurement of key geometric parameters of droplet in circuit jet printing on fabric surface [J]. Journal of Textile Research, 2021, 42(07): 137-143.
[4] XIAO Yuan, LI Hongying, LI Qian, ZHANG Wei, YANG Pengcheng. Preparation of flexible sensor with composite dielectric layer of cotton fabric/polydimethylsiloxane [J]. Journal of Textile Research, 2021, 42(05): 79-83.
[5] LIU Mingxue, ZHAO Qian, WANG Xiaohui, LIU Qiongxi, SHAO Jianzhong. Bonding fastness of magnetron sputtering nano-films with various textile substrates [J]. Journal of Textile Research, 2021, 42(02): 135-141.
[6] WANG Xiaohui, LI Yichen, LIU Guojin, TANG Zuping, ZHOU Lan, SHAO Jianzhong. Preparation and optical properties of flexible photonic crystal film for structural colors [J]. Journal of Textile Research, 2021, 42(02): 12-20.
[7] ZENG Fanxin, QIN Zongyi, SHEN Yueying, CHEN Yuanyu, HU Shuo. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology [J]. Journal of Textile Research, 2021, 42(01): 103-111.
[8] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[9] SHENG Mingfei, ZHANG Liping, FU Shaohai. Preparation and property of dye-doped liquid crystal microcapsules for electro-stimulated responsive smart textiles [J]. Journal of Textile Research, 2020, 41(08): 63-68.
[10] CHEN Jiaying, TIAN Xu, PENG Jingjing, FANG Tong, GAO Weihong. Fabrication of structural colors for knitted fabrics [J]. Journal of Textile Research, 2020, 41(07): 117-121.
[11] WANG Fanghe, WANG Rui, WEI Lifei, WANG Zhaoying, ZHANG Anying, WANG Deyi. Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics [J]. Journal of Textile Research, 2019, 40(11): 106-112.
[12] CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168.
[13] FAN Jingjing, WANG Hongbo, FU Jiajia, WANG Wencong. Preparation of composite conductive cotton fabric based on carbon nanotubes by layer-by-layer self-assembly [J]. Journal of Textile Research, 2019, 40(04): 90-95.
[14] CAO Jiliang, XU Licong, MENG Chunli, LI Xiaochun. Electric conductivity of cotton fabrics by graphene UV curable coating [J]. Journal of Textile Research, 2019, 40(02): 135-140.
[15] LIU Fei, LI Qiujin, GONG Jixian, LI Zheng, LIU Xiuming, ZHANG Jianfei. Polysaccharide microcapsules via layer-by-layer assembly for cotton fabric as sustained release vessel [J]. Journal of Textile Research, 2019, 40(02): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 114 -115 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 116 -118 .