Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (05): 1-9.doi: 10.13475/j.fzxb.20241203701
• Invited Column: Intelligent Fiber and Fabric Device • Next Articles
YU Mengfei1, GAO Wenli1, REN Jing1, CAO Leitao1, PENG Ruoxuan1, LING Shengjie1,2(
)
CLC Number:
| [1] | HE Junyuan, CAO Leiqing, CUI Jiaojiao, et al. Flexible energy storage devices to power the future[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202306090. |
| [2] | ZHOU Yuankai, SHEN Maoliang, CUI Xin, et al. Triboelectric nanogenerator based self-powered sensor for artificial intelligence[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.105887. |
| [3] | LI Zhe, ZHENG Qiang, WANG Zhonglin, et al. Nanogenerator-based self-powered sensors for wearable and implantable electronics[J]. Research, 2020. DOI: 10.34133/2020/8710686. |
| [4] | CHEN Jun, WANG Zhonglin. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator[J]. Joule, 2017, 1(3): 480-521. |
| [5] | ALIYANA Akshaya Kumar, STYLIOS George. A review on the progress in core-spun yarns (CSYs) based textile TENGs for real-time energy generation, capture and sensing[J]. Advanced Science, 2023. DOI: 10.1002/advs.202304232. |
| [6] | FU Chiyu, TANG Wenyang, MIAO Ying, et al. Large-scalable fabrication of liquid metal-based double helix core-spun yarns for capacitive sensing, energy harvesting, and thermal management[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2022.108078. |
| [7] | 马丽芸, 吴荣辉, 刘赛, 等. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(1): 53-58. |
| MA Liyun, WU Ronghui, LIU Sai, et al. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn[J]. Journal of Textile Research, 2021, 42(1): 53-58. | |
| [8] | ZHENG Lijing, ZHU Miaomiao, WU Baohu, et al. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing[J]. Science Advances, 2021. DOI: 10.1126/sciadv.abg4041. |
| [9] | YANG Yujue, XU Bingang, GAO Yuanyuan, et al. Conductive composite fiber with customizable functionalities for energy harvesting and electronic textiles[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 49927-49935. |
| [10] |
KANG Edward, JEONG Gi Seok, CHOI Yoonyoung, et al. Digitally tunable physicochemical coding of material composition and topography in continuous micro-fibres[J]. Nature Materials, 2011, 10: 877-883.
doi: 10.1038/nmat3108 pmid: 21892177 |
| [11] |
WU Ronghui, KIM Taesung. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics[J]. Lab on a Chip, 2021, 21(7): 1217-1240.
doi: 10.1039/d0lc01208d pmid: 33710187 |
| [12] | YU Yunru, GUO Jiahui, SUN Lingyu, et al. Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics[J]. Research-China, 2019. DOI: 10.34133/2019/6906275. |
| [13] | DU Xiangyun, LI Qiang, WU Guan, et al. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201903733. |
| [14] | HU Xili, TIAN Mingwei, PAN Ning, et al. Structure-tunable graphene oxide fibers via microfluidic spinning route for multifunctional textiles[J]. Carbon, 2019, 152, 106-113. |
| [15] |
DONG Kai, WANG Yicheng, DENG Jianan, et al. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors[J]. ACS Nano, 2017, 11(9): 9490-9499.
doi: 10.1021/acsnano.7b05317 pmid: 28901749 |
| [16] |
XIONG Jiaqing, LEE Pooi See. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile[J]. Science and Technology of Advanced Materials, 2019, 20(1): 837-857.
doi: 10.1080/14686996.2019.1650396 pmid: 31497178 |
| [17] | SHI Lin, JIN Hao, DONG Shurong, et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2020.105599. |
| [18] |
JIN Long, XIAO Xiao, DENG Weili, et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators[J]. Nano Letters, 2020, 20(9): 6404-6411.
doi: 10.1021/acs.nanolett.0c01987 pmid: 32584050 |
| [19] | SAXENA Pooja, SHUKLA Prashant. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF)[J]. Advanced Composites and Hybrid Materials, 2021, 4: 8-26. |
| [20] |
YE Chao, YANG Shuo, REN Jin, et al. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception[J]. ACS Nano, 2022, 16(3): 4415-4425.
doi: 10.1021/acsnano.1c10680 pmid: 35238534 |
| [21] | CAO Xinyi, YE Chao, CAO Leitao, et al. Biomimetic spun silk ionotronic fibers for intelligent discrimination of motions and tactile stimuli[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202300447. |
| [22] | WU Chuang, ALMUAALEMI Haithm Yahya Mohammed, SOHAN A S M Muhtasim, et al. Effect of flow velocity on laminar flow in microfluidic chips[J]. Micromachines (Basel), 2023. DOI: 10.3390/mi14071277. |
| [23] |
VATANKHAH-VARNOSFADERANI Mohammad, KEITH Andrew N, CONG Yidan, et al. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration[J]. Science, 2018, 359(6383): 1509-1513.
doi: 10.1126/science.aar5308 |
| [24] | VATANKHAH-VARNOSFADERANI Mohammad, Daniel William F M, EVERHART Matthew H, et al. Mimicking biological stress-strain behaviour with synthetic elastomers[J]. Nature, 2017, 549: 497-501. |
| [25] | XING Xiaowei, ZHANG Xiaoyu, TASIN Md Arif Saleh, et al. Interlaced amphiphobic nanofibers for smart waterproof and breathable membranes with instant waterproofness monitoring ability[J]. ACS Applied Polymer Materials, 2024, 6 (12), 7301-7310. |
| [26] |
KIM Weon Guk, KIM Do Wan, TCHO Il Woong, et al. Triboelectric nanogenerator: structure, mechanism, and applications[J]. ACS Nano, 2021, 15(1): 258-287.
doi: 10.1021/acsnano.0c09803 pmid: 33427457 |
| [27] | JIANG Yang, DONG Kai, LI Xin, et al. Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202005584. |
| [28] | WANG Zhonglin. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators[J]. Materials Today, 2017, 20(2): 74-82. |
| [1] | CHEN Xiao, ZHAO Jizhong, DONG Kai. Strategies for enhancing performance of novel mechano-electric conversion fibers based on contact electrification effect [J]. Journal of Textile Research, 2025, 46(05): 41-48. |
| [2] | YAN Jing, WANG Yaqian, LIU Jingjing, LI Haoyi, YANG Weimin, KANG Weimin, ZHUANG Xupin, CHENG Bowen. Preparation of melt-electrospun filament yarns and their applications in triboelectric nanogenerators [J]. Journal of Textile Research, 2025, 46(05): 23-29. |
| [3] | LIU Ye, WANG Junsheng, JIN Xing. Research progress in intelligent textiles for firefighter's personal protective equipment [J]. Journal of Textile Research, 2025, 46(05): 105-115. |
| [4] | LI Xingxing, LI Qin, YUE Tiantian, LIU Yuqing. Progress in microfluidics preparation technology of micro/nano cellulose materials [J]. Journal of Textile Research, 2022, 43(04): 180-186. |
| [5] | MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58. |
| [6] | . Preparation of flexible all-braiding triboelectric nanogenerator [J]. Journal of Textile Research, 2018, 39(09): 34-38. |
| [7] | Yang Rui-Hua. A mathematic model of convergent point for rotor-spun composite yarn spinning process [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(4): 39-42. |
| [8] | LI Shufeng;WANG Rui;KANG Weimin;HUANG Junpeng. Hygroscopicity of the PET/EVOH sheath-core fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(3): 5-8. |
| [9] | LIU Gui;YU Weidong. Quantitative evaluation method for the significance of worsted fore-spinning parameters based on BP neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(1): 34-37. |
|
||