Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (05): 202-213.doi: 10.13475/j.fzxb.20240601801
• Dyeing and Finishing Engineering • Previous Articles Next Articles
ZHANG Jinqin1,2, LI Jing1,2, XIAO Ming1,2, BI Shuguang1,2(
), RAN Jianhua1,2
CLC Number:
| [1] | ZHANG H, HE R, NIU Y, et al. Graphene-enabled wearable sensors for healthcare monitoring[J]. Biosensors and Bioelectronics, 2022. DOI: 10.1016/j.bios.113777. |
| [2] | CHEN S, QI J, FAN S, et al. Flexible wearable sensors for cardiovascular health monitoring[J]. Advanced Healthcare Materials, 2021. DOI: 10.1002/adhm.00116. |
| [3] | CHEN D, CAI Y, CHENG L, et al. Structure and function design of carbon nanotube-based flexible strain sensors and their application[J]. Measurment, 2024. DOI: 10.1016/j.measurement.113992. |
| [4] |
LUO D, SUN H, LI Q, et al. Flexible sweat sensors: from films to textiles[J]. ACS Sensors, 2023, 8: 465-481.
doi: 10.1021/acssensors.2c02642 pmid: 36763075 |
| [5] | YU A, ZHU M, CHEN C, et al. Implantable flexible sensors for health monitoring[J]. Advanced Hralthcare Materials, 2024. DOI: 10.1002/adhm.02460. |
| [6] | XING T, HE A, HUANG Z, et al. Silk-based flexible electronics and smart wearable textiles: progress and beyond[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.145534. |
| [7] | DCOSTA J V, OCHOA D, SANAUR S. Recent progress in flexible and wearable all organic photoplethysmography sensors for SpO2 monitoring[J]. Advanced Science, 2023. DOI: 10.1002/advs.02752. |
| [8] | ZHANG Z, LIU G, LI Z, et al. Flexible tactile sensors with biomimetic microstructures: mechanisms, fabrication, and applications[J]. Advances in Collold and Interface Science, 2023. DOI: 10.1016/j.cis.102988. |
| [9] | CHAO M, DI P, YUAN Y, et al. Flexible breathable photothermal-therapy epidermic sensor with MXene for ultrasensitive wearable human-machine interaction[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.108201. |
| [10] |
LUO Y, ABIDIAN M R, AHN J H, et al. Technology roadmap for flexible sensors[J]. ACS Nano, 2023, 17(6): 5211-5295.
doi: 10.1021/acsnano.2c12606 pmid: 36892156 |
| [11] | HUANG X, BU T, ZHENG Q, et al. Flexible sensors with zero Poisson ratio[J]. National Science Review, 2024. DOI: 10.1093/nsr/nwae027. |
| [12] | LEE J H, CHO K, KIM J K. Age of flexible electronics: emerging trends in soft multifunctional sensors[J]. Advanced Materials, 2024. DOI: 10.1002/adma.10505. |
| [13] | XIAOQI Z, HUANYU C. Flexible and stretchable metal oxide gas sensors for healthcare[J]. Science China-Technological Sciences, 2019, 62(2): 209-223. |
| [14] | YAN Z, ZHANG S, GAO M, et al. Ultrasensitive and wide-range-detectable flexible breath sensor based on silver vanadate nanowires[J]. ACS Applied Electronic Materials, 2023, 5(1): 520-525. |
| [15] | PATHAK P, HWANG J H, LI R T, et al. Flexible copper-biopolymer nanocomposite sensors for trace level lead detection in water[J]. Sensors and Actuaors B-Chemical, 2021. DOI: 10.1016/j.snb.130263. |
| [16] | LEE J, LE Q T, LEE D, et al. Micropyramidal flexible ion gel sensor for multianalyte discrimination and strain compensation[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 26138-26147. |
| [17] | CHEN D, CAI Y, CHENG L, et al. Structure and function design of carbon nanotube-based flexible strain sensors and their application[J]. Measurement, 2024. DOI: 10.1016/j.measurement.113992. |
| [18] | XU C, CHEN J, ZHU Z, et al. Flexible pressure sensors in human-machine interface applications[J]. Small, 2023. DOI: 10.1002/smll.06655. |
| [19] | GALVAGNO E, TARTAGLIA E, STRATIGAKI M, et al. Present status and perspectives of graphene and graphene-related materials in cultural heritage[J]. Advanced Functional Materials, 2024. DOI: 10.1002/adfm.13043. |
| [20] | SUN P Z, XIONG W Q, BERA A, et al. Unexpected catalytic activity of nanorippled graphene[J]. Proceedings of The National Academy of Sciences, 2023. DOI: 10.1073/pnas.00481120. |
| [21] | CHUN S, SON W, KIM D W, et al. Water-resistant and skin-adhesive wearable electronics using graphene fabric sensor with octopus-inspired microsuckers[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16951-16957. |
| [22] | ZHAO Z, YAN C, LI D, et al. Fabrication of rGO/Cu NPs on knitted fabrics for action sensing and electrothermal applications[J]. Surfaces and Interfaces, 2023. DOI: 10.1016/j.surfin.102600. |
| [23] | WANG X, LI Q, TAO X. Sensing mechanism of a carbon nanocomposite-printed fabric as a strain sensor[J]. Composites Part A: Applied Science and Manufacturing, 2021. DOI: 10.1016/j.compositesa.106350. |
| [24] | 肖明, 黄亮, 罗龙永, 等. 羧基化聚苯乙烯荧光微球的合成及其在织物防伪中的应用[J]. 纺织学报, 2023, 44(2): 184-190. |
| XIAO Ming, HUANG Liang, LUO Longyong, et al. Synthesis of carboxylated polystyrene fluorescent microspheres and its application in fabric anti-counterfeiting[J]. Journal of Textile Research, 2023, 44(2): 184-190. | |
| [25] | ZHENG Y, JIN Q, CHEN W, et al. High sensitivity and wide sensing range of stretchable sensors with conductive microsphere array structures[J]. Journal of Materials Chemistry C, 2019, 7(27): 8423-8431. |
| [26] | LI Y, SHI L, CHENG Y, et al. Development of conductive materials and conductive networks for flexible force sensors[J]. Chemical Engineering Journal, 2023. DOI: 0.1016/j.cej.140763. |
| [27] | WANG C, LI X, GAO E, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors[J]. Advanced Materials, 2016. DOI: 10.1002/adma.01572. |
| [28] | CHEN H, ZHUO F, ZHOU J, et al. Advances in graphene-based flexible and wearable strain sensors[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.142576. |
| [29] | AMJADI M, PICHITPAJONGKIT A, LEE S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire: elastomer nanocomposite[J]. ACS Nano, 2014, 8(5): 5154-5163. |
| [30] | DESAI A V, HAQUE M A. Mechanics of the interface for carbon nanotube: polymer composites[J]. Thin-Walled Structures, 2005, 43(11): 1787-1803. |
| [31] |
ALAMUSI, HU N, FUKUNAGA H, et al. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites[J]. Sensors, 2011, 11(11): 10691-10723.
doi: 10.3390/s111110691 pmid: 22346667 |
| [32] | LIN L, LIU S, ZHANG Q, et al. Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elasto-mer[J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5815-5824. |
| [33] | ZHANG J, GAO K, WENG S, et al. Graphene nanoplatelets/polydimethylsiloxane flexible strain sensor with improved sandwich structure[J]. Sensors, 2024. DOI: 10.3390/s092856. |
| [34] | ZHANG X, KE L, ZHANG X, et al. Breathable and wearable strain sensors based on synergistic conductive carbon nanotubes/cotton fabrics for multi-directional motion detection[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25753-25762. |
| [35] | LUAN J, WANG Q, ZHENG X, et al. Flexible metal/polymer composite films embedded with silver nanowires as a stretchable and conductive strain sensor for human motion monitoring[J]. Micromachines, 2019. DOI: 10.3390/mi10060372. |
| [36] | SOE H M, ABD MANAF A, MATSUDA A, et al. Performance of a silver nanoparticles-based polydimethylsiloxane composite strain sensor produced using different fabrication methods[J]. Sensors and Actuators A: Physical, 2021. DOI: 10.1016/j.sna.112793. |
| [37] | AFROJ S, TAN S, ABDELKADER A M, et al. Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.00293. |
| [38] | DING H, LUO Z, KONG N, et al. Constructing conductive titanium carbide nanosheet (MXene) network on natural rubber foam framework for flexible strain sensor[J]. Journal of Materials Science-Materials in Electronics, 2022, 33(19): 15563-15573. |
| [1] | SHE Yemei, PENG Yangyang, WANG Fameng, PAN Ruru. Preparation and performance of flexible pressure sensor based on warp knitted spacer fabric [J]. Journal of Textile Research, 2025, 46(03): 158-166. |
| [2] | FAN Mengjing, YUE Xinyan, SHAO Jianbo, CHEN Yu, HONG Jianhan, HAN Xiao. Construction and sensing performance of capacitive torsion sensor made from electrospinning fiber core-spun yarn [J]. Journal of Textile Research, 2025, 46(02): 106-112. |
| [3] | ZUO Hongmei, GAO Min, RUAN Fangtao, ZOU Lihua, XU Zhenzhen. Preparation and mechanical properties of MXene-graphene oxide modified carbon fiber/polylactic acid composites [J]. Journal of Textile Research, 2025, 46(01): 9-15. |
| [4] | LIU Yanbo, GAO Xinyu, HAO Ming, HU Xiaodong, YANG Bo. Composite fiber felts based on photothermal modification and their application in high viscosity oil adsorption [J]. Journal of Textile Research, 2024, 45(11): 55-64. |
| [5] | LI Luhong, LUO Tian, CONG Honglian. Design and performance of integrated capacitive sensor based on knitting [J]. Journal of Textile Research, 2024, 45(10): 80-88. |
| [6] | CHEN Kun, XU Jingying, ZHENG Yiqian, LI Jialin, HONG Xinghua. Conductivity and electrical heating properties of reduced graphene oxide modified silk fabric by screen printing [J]. Journal of Textile Research, 2024, 45(03): 122-128. |
| [7] | YAN Pengxiang, CHEN Fuxing, LIU Hong, TIAN Mingwei. Preparation of flexible force-sensing electronic textiles and construction of human motion monitoring system [J]. Journal of Textile Research, 2024, 45(02): 59-66. |
| [8] | HE Yin, DENG Ling, LIN Meixia, LI Qianqian, XIAO Shuang, LIU Hao, LIU Li. Key technology development of intelligent and flexible mannequin for winter sports [J]. Journal of Textile Research, 2024, 45(02): 221-230. |
| [9] | GU Jinjun, WEI Chunyan, GUO Ziyang, LÜ Lihua, BAI Jin, ZHAO Hanghuiyan. Preparation and performonce of cotton stalk bast microcrystalline cellulose/modified graphene oxide composite flame-retardant fiber [J]. Journal of Textile Research, 2024, 45(01): 39-47. |
| [10] | LI Luhong, ZHAO Boyu, CONG Honglian. Design and performance of warp knit capacitive sensor using silver plated PA/cotton yarns with composite structure [J]. Journal of Textile Research, 2023, 44(08): 88-95. |
| [11] | SUN Jianghao, SHAO Yanzheng, WEI Chunyan, WANG Ying. Preparation and adsorption analysis of sodium alginate/graphene oxide microporous aerogel fiber [J]. Journal of Textile Research, 2023, 44(04): 24-31. |
| [12] | LI Ganghua, WANG Hang, SHI Baohui, QU Lijun, TIAN Mingwei. Construction of flexible electronic fabric and its pressure sensing performance [J]. Journal of Textile Research, 2023, 44(02): 96-102. |
| [13] | WAN Ailan, SHEN Xinyan, WANG Xiaoxiao, ZHAO Shuqiang. Preparation and sensing response characterization of polydopamine modified reduced graphene oxide/polypyrrole conductive fabrics [J]. Journal of Textile Research, 2023, 44(01): 156-163. |
| [14] | WANG Shuangshuang, JI Zhihao, SHENG Guodong, JIN Enqi. Dye and heavy metal adsorption performance of zero-valent iron/graphene oxide blend absorbent [J]. Journal of Textile Research, 2022, 43(09): 156-166. |
| [15] | YANG Honglin, XIANG Wei, DONG Shuxiu. Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites [J]. Journal of Textile Research, 2022, 43(08): 107-112. |
|
||