Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 156-166.doi: 10.13475/j.fzxb.20210603311

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Dye and heavy metal adsorption performance of zero-valent iron/graphene oxide blend absorbent

WANG Shuangshuang, JI Zhihao, SHENG Guodong, JIN Enqi()   

  1. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2021-06-10 Revised:2022-06-20 Online:2022-09-15 Published:2022-09-26
  • Contact: JIN Enqi E-mail:jdkxxh_2001@163.com

Abstract:

In order to combat the serious pollution caused by dyes and heavy metal Cr(Ⅵ) in acid dye, zero-valent iron (Fe0)/graphene oxide (GO) compound was used as an adsorbent. The aqueous solutions containing Weak Acid Blue AS dye and heavy metal Cr(Ⅵ), respectively, were employed to simulate dye wastewater. The effects of the mass ratio of Fe0 and GO, the pH value of solution, and the initial mass concentration of dye and Cr(Ⅵ) on the adsorption performance were analyzed. The adsorption mechanism of Fe0/GO blend adsorbent for acid dye and Cr(Ⅵ) was investigated, and the adsorption thermodynamics and kinetics were studied. The results show that Fe0/GO blend adsorbent has the best adsorption capacity when the weight ratio is 4∶1. When the initial concentration of dye wastewater is 75 mg/L at 30 ℃ and pH is 4.0, the removal percentage is 85.6% after 12 h, and the maximum adsorption capacity reaches 85.6 mg/g. When the initial concentration of Cr(Ⅵ) is 75 mg/L at 30 ℃ and pH is 3.0, the removal percentage reaches 95.8% after 12 h, and the maximum adsorption capacity reaches 95.8 mg/g. The adsorption processes to both acid dye and Cr(Ⅵ) were both in accordance with the Langmuir model and the pseudo-second-order kinetic model.

Key words: graphene oxide, zero-valent iron, adsorption performance, Cr(VI), acid dye, dye wastewater

CLC Number: 

  • TS199

Fig.1

Fitting line between concentration and absorbance of Weak Acid Blue AS solution"

Fig.2

Fitting line of relationship between concentration and absorbance of Cr(Ⅵ) complex solution"

Tab.1

Adsorption capacity of Fe0/GO with different mass ratios for acid dyes and Cr(Ⅵ)"

m(Fe0)∶m(GO) 弱酸性蓝AS去除率/% Cr(Ⅵ)去除率/%
8∶1 76.9 9.8
4∶1 87.4 23.5
1∶1 84.7 18.8
1∶4 84.1 10.6
1∶2 77.9 7.3
纯Fe0 61.7 5.4
纯GO 43.9 2.9

Fig.3

Influence of pH value on adsorption performance"

Fig.4

Zeta potential of Fe0/GO in different pH solutions"

Fig.5

Influence of initial concentration of Weak Acid Blue AS on adsorption performance"

Fig.6

Influence of initial concentration of Cr(Ⅵ) on adsorption performance"

Tab.2

Adsorption capacity of common adsorbents for Weak Acid Blue AS"

吸附剂名称 qm/
(mg·g-1)
吸附条件 参考文献
pH值 温度/K
阴离子交换纤维 8.3 2.0 353 [21]
硅藻土 17.2 5.0 298 [22]
壳聚糖插层蒙脱土 18.8 5.0 293 [23]
活性碳纤维 76.5 8.0 283 [24]
Fe0/GO 85.6 4.0 303 本文

Tab.3

Adsorption capacity of common adsorbents for Cr(Ⅵ)"

吸附剂名称 qm/
(mg·g-1)
吸附条件 参考文献
pH值 温度/K
水化氯铝酸钙 3.5 6.0 298 [25]
磁性水葫芦生物炭 18.5 2.0 298 [26]
γ-Al2O3固载水滑石 49.2 3.0 298 [27]
铁铝水滑石 51.3 6.0 298 [28]
Fe0/GO 95.8 4.0 303 本文

Fig.7

Adsorption performance of Fe0/GO for mixed pollutants of Weak Acid Blue AS and Cr(Ⅵ) under optimized adsorption conditions"

Fig.8

Adsorption performance of Fe0/GO after regeneration and recycling"

Fig.9

SEM images of Fe0, GO and Fe0/GO before and after adsorption for Weak Acid Blue AS or Cr(Ⅵ). (a)Fe0 (×300); (b)GO (×1 000);(c)Fe0/GO (×300);(d)Fe0/GO after adsorbing Weak Acid Blue AS (×300);(e)Fe0/GO after adsorbing Cr(Ⅵ) (×300)"

Fig.10

Raman spectra of Weak Acid Blue AS and Fe0/GO before and after adsorbing Weak Acid Blue AS"

Fig.11

Raman spectra of Fe0/GO before and after adsorbing Cr(Ⅵ) and K2Cr2O7"

Fig.12

FT-IR spectra of Weak Acid Blue AS and Fe0/GO before and after adsorbing Weak Acid Blue AS"

Fig.13

FT-IR spectra of Fe0/GO before and after adsorbing Cr(Ⅵ) and K2Cr2O7"

Fig.14

XPS spectra of Fe0/GO after adsorbing Cr(Ⅵ)"

Fig.15

Adsorption isotherms of Weak Acid Blue AS adsorbed onto Fe0/GO using Langmuir (a) and Freundlich (b) models"

Fig.16

Adsorption isotherms of Cr(Ⅵ) adsorbed onto Fe0/GO using Langmuir(a) and Freundlich(b) models"

Tab.4

Adsorption isotherm parameters of Weak Acid Blue AS and Cr(Ⅵ) onto Fe0/GO"

污染物
名称
Langmuir模型参数 Freundlich模型参数
b/
(L·mg-1)
qmax /
(mg·g-1)
R2 KF/
(mg1-n·Ln)
n R2
弱酸性
蓝AS
0.682 7 4.66 0.957 4 5.686 0.460 1 0.886 3
Cr (Ⅵ) 0.011 7 178.57 0.994 8 14.150 0.416 2 0.992 1

Fig.17

Pseudo-first-order (a) and pseudo-second-order (b) adsorption kinetics fitting lines of Weak Acid Blue AS adsorbed onto Fe0/GO"

Fig.18

Pseudo-first-order(a) and pseudo-second-order(b) adsorption kinetics fitting lines of Cr(Ⅵ) adsorbed onto Fe0/GO"

Tab.5

Adsorption kinetics parameters of Weak Acid Blue AS and Cr(Ⅵ) onto Fe0/GO"

污染物
名称
准一级动力学参数 准二级动力学参数
k1×103 qe/
(mg·g-1)
R2 k2×105 qe/
(mg·g-1)
R2
弱酸性蓝AS 5.40 48.85 0.940 6 19.57 71.43 0.995 4
Cr (Ⅵ) 7.10 63.44 0.876 4 6.60 68.97 0.931 2
[1] 卢莱雅, 秦嘉玲, 杨圩. 关于印染废水处理方法的综述[J]. 山东化工, 2020, 49(15):67-68.
LU Laiya, QIN Jialing, YANG Wei. A review on the method for textile wastewater[J]. Shandong Chemical Industry, 2020, 49(15):67-68.
[2] 罗忻, 修晓丽, 牛增元. 纺织品中致癌致敏染料检测的研究进展及存在问题[J]. 纺织学报, 2013, 34(7): 154-164.
LUO Xin, XIU Xiaoli, NIU Zengyuan. Research progress and existing problems on determination of carcinogenic and allergenic dyes in textiles[J]. Journal of Textile Research, 2013, 34(7): 154-164.
[3] 吴刚, 王力君, 张明誉, 等. 涤纶中致癌芳香胺的加速溶剂萃取-UPLC-MS/MS快速测定[J]. 纺织学报, 2014, 35(7): 94-100.
WU Gang, WANG Lijun, ZHANG Mingyu, et al. Determination of aromatic amines in terylene by ASE coupled with UPLC-MS/MS[J]. Journal of Textile Research, 2014, 35(7): 94-100.
[4] 管斌斌, 李庆, 陈灵辉, 等. 快速测定基于锆-有机骨架的印染废水中Cr(Ⅵ)的荧光检测[J]. 纺织学报, 2021, 42(2): 122-128.
GUAN Binbin, LI Qing, CHEN Linghui, et al. Fluorescence detection of Cr(Ⅵ) from printing and dyeing wastewater by zirconium-organic framework[J]. Journal of Textile Research, 2021, 42(2): 122-128.
doi: 10.1177/004051757204200209
[5] 邓一民, 代方银, 易世雄, 等. 蚕茧对六价铬的吸附性能[J]. 纺织学报, 2015, 36(4): 82-86.
DENG Yimin, DAI Fangyin, YI Shixiong, et al. Adsorption capacity of cocoon to Cr(Ⅵ)[J]. Journal of Textile Research, 2015, 36(4): 82-86.
[6] LIU T T, WANG Z, WANG X R, et al. Adsorption-photocatalysis performance of polyaniline/dicarboxyl acid cellulose@graphene oxide for dye removal[J]. International Journal of Biological Macromolecules, 2021, 182: 492-501.
doi: 10.1016/j.ijbiomac.2021.04.038
[7] EBRAHIMPOOR S, KIAROSTAMI V, KHOSRAVI M, et al. Optimization of tartrazine adsorption onto polypyrrole/SrFe12O19/graphene oxide nanocomposite using central composite design and bat inspired algorithm with the aid of artificial neural networks[J]. Fibers and Polymers, 2021, 22: 159-170.
doi: 10.1007/s12221-021-8163-9
[8] SIRAJUDHEEN P, KARTHIKEYAN P, VIGNESHWARAN S, et al. Complex interior and surface modified alginate reinforced reduced graphene oxide-hydroxyapatite hybrids: removal of toxic azo dyes from the aqueous solution[J]. International Journal of Biological Macromolecules, 2021, 175: 361-371.
doi: 10.1016/j.ijbiomac.2021.02.024
[9] XU H, TIAN L, ZHANG Y J, et al. Simultaneous removal of Cr(Ⅵ) and Orange G6 by polyaniline/attapulgite supported nano zero-valent iron activate persulfate[J]. Desalination and Water Treatment, 2021, 209: 353-366.
doi: 10.5004/dwt.2021.26518
[10] KANG H B, GU J H, LIU G, et al. Performance and mechanism of layered double hydroxide to remove graphene oxide in aqueous solution[J]. Nature Environment and Pollution Technology, 2021, 20: 55-62.
doi: 10.46488/NEPT.2021.v20i01.006
[11] HOSSAIN M I, SOLIMAN M M, El-NAGGAR M E, et al. Synthesis and characterization of graphene oxide-ammonium ferric sulfate composite for the removal of dyes from tannery wastewater[J]. Journal of Materials Research and Technology, 2021, 12: 1715-1727.
doi: 10.1016/j.jmrt.2021.03.097
[12] ZHAO Y G, ZHU Y, ZHANG Y, et al. Ultrasound-assisted synthesis of tetraethylenepentamine-modified graphene oxide/dispersive Fe3O4 composites with enhanced adsorption capacity for allergenic disperse dyes[J]. Journal of the Iranian Chemical Society, 2021, 18: 1113-1125.
doi: 10.1007/s13738-020-02099-3
[13] 刘扬, 安立宝, 龚亮. Fe掺杂石墨烯表面吸附Au: 第一性原理[J]. 南京工业大学学报(自然科学版), 2018, 40(3): 109-114.
LIU Yang, AN Libao, GONG Liang. Adsorption of Au on Fe-doped grapheme: the first principles[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2018, 40(3): 109-114.
[14] LI S S, YANG F, ZHANG Y Y, et al. Performance of lead ion removal by the three-dimensional carbon foam supported nanoscale zero-valent iron composite[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jelepro.2020.125350.
doi: 10.1016/j.jelepro.2020.125350
[15] LI Z, JONES H K, BOWMAN R S, et al. Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron[J]. Environmental Science & Technology, 1999, 33: 4326-4330.
doi: 10.1021/es990334s
[16] WENG C H, LIN Y T, LIN T Y, et al. Enhancement of electrokinetic remediation of hyper-Cr(Ⅵ) contaminated clay by zero-valent iron[J]. Journal of Hazardous Materials, 2007, 149: 292-302.
doi: 10.1016/j.jhazmat.2007.03.076
[17] 王彦娜, 夏爱清, 梁慧锋, 等. 磁性氧化石墨烯/聚苯胺纳米复合材料的制备及再生循环吸附性研究[J]. 化学研究与应用, 2020, 32(7): 1296-1301.
WANG Yanna, XIA Aiqing, LIANG Huifeng, et al. Synthesis and cyclic absorption properties of magnetic graphene oxide/polyaniline nanocomposite[J]. Chemical Research and Application, 2020, 32(7): 1296-1301.
[18] 李秀玲, 柳亚清, 曹晶潇, 等. 活性炭纤维对废水中Cr(Ⅵ)的吸附性能及再生试验研究[J]. 湿法冶金, 2020, 39(4): 335-340.
LI Xiuling, LIU Yaqing, CAO Jingxiao, et al. Adsorption and regeneration of activated carbon fiber for Cr(Ⅵ) in wastewater[J]. Hydrometallurgy of China, 2020, 39(4): 335-340.
[19] LI P, ZHENG T L, WANG Q H, et al. Treatment of real high-concentration dyeing wastewater using a coagulation-hydrolysis acidification-multilevel contact oxidation system[J]. Environmental Progress & Sustainable Energy, 2015, 34: 339-345.
[20] 薛志成. 节能环保的电解法处理染色废水[J]. 陕西纺织, 2009(2): F3.
XUE Zhicheng. Treatment of dyeing wastewater by electrolysis with energy saving and environmental protection[J]. Shaanxi Textile, 2009(2): F3.
[21] 赵燕, 付丽红, 张业聪. 阴离子交换纤维对酸性染料吸附性能的研究[J]. 中国皮革, 2009, 38(17): 19-22.
ZHAO Yan, FU Lihong, ZHANG Yecong. Adsorption properties of anion exchange fiber for acid dye[J]. China Leather, 2009, 38(17): 19-22.
[22] 矫娜, 王东升, 段晋明, 等. 改性硅藻土对三种有机染料的吸附作用研究[J]. 环境科学学报, 2012, 32(6): 1364-1369.
JIAO Na, WANG Dongsheng, DUAN Jinming, et al. Adsorption of three organic dyes on modified diatomite[J]. Journal of Environmental Sciences, 2012, 32(6): 1364-1369.
[23] 马娟娟, 卓宁泽, 陆嘉伟, 等. 壳聚糖插层蒙脱土复合材料吸附酸性染料的动力学和热力学研究[J]. 离子交换与吸附, 2011, 27(2): 129-136.
MA Juanjuan, ZHUO Ningze, LU Jiawei, et al. Kinetic and thermodynamic studies on the adsorption of acid dyes with chitosan-montmorillonite hybrid materials[J]. Ion Exchange and Adsorption, 2011, 27(2): 129-136.
[24] 龚正君, 周文波, 陈钰. 活性炭纤维对水中酸性染料的吸附研究[J]. 工业水处理, 2012, 32(9): 24-28.
GONG Zhengjun, ZHOU Wenbo, CHEN Yu. Study on the adsorption of acidic dyes in water with activated carbon fiber[J]. Industrial Water Treatment, 2012, 32(9): 24-28.
[25] 韩晓刚, 顾一飞, 闵建军, 等. 聚氯化铝残渣制备水化氯铝酸钙及其对六价铬的吸附[J]. 电镀与涂饰, 2021, 40(4): 308-312.
HAN Xiaogang, GU Yifei, MIN Jianjun, et al. Preparation of hydrated calcium chloroaluminate from polyaluminum chloride residue and its adsorbility to Cr(Ⅵ)[J]. Electroplating and Finishing, 2021, 40(4): 308-312.
[26] 张康, 吴小清, 张华, 等. 磁性水葫芦生物炭对废水中六价铬的吸附性能[J]. 桂林理工大学学报, 2020, 40(1): 193-200.
ZHANG Kang, WU Xiaoqing, ZHANG Hua, et al. Adsorption performance of magnetic biochar derived from water hyacinth to hexavalent chromium in wastewater[J]. Journal of Guilin University of Technology, 2020, 40(1): 193-200.
[27] 孙洪刚, 李士凤. γ-Al2O3固载水滑石的制备及其动态吸附Cr(Ⅵ)的性能研究[J]. 当代化工, 2020, 49(7): 1384-1387.
SUN Honggang, LI Shifeng. Preparation of γ-Al2O3 supported hydrotalcite and its dynamic adsorption for Cr(Ⅵ)[J]. Contemporary Chemical Industry, 2020, 49(7): 1384-1387.
[28] 王鹏瑞, 杨丹, 张雪, 等. 钙铝和铁铝水滑石的制备及其吸附水中六价铬的性能[J]. 中国粉体技术, 2021, 27(3): 59-67.
WANG Pengrui, YANG Dan, ZHANG Xue, et al. Preparation of CaAl-and FeAl-layered double hydroxides and adsorptive removal Cr(Ⅵ) in aqueous solutions[J]. China Powder Science and Technology, 2021, 27(3): 59-67.
[29] LI M L, JI Z H, SHENG G D, et al. Scavenging mechanism of rare earth metal ions in water by graphene oxide[J]. Journal of Molecular Liquids, 2021. DOI: 10.1016/j.molliq.2020.114940.
doi: 10.1016/j.molliq.2020.114940
[30] 潘铁英, 张玉兰, 苏克曼. 波谱解析法[M]. 2版. 上海: 华东理工大学出版社, 2009:158-159.
PAN Tieying, ZHANG Yulan, SU Keman. Spectral analysis method[M]. 2nd ed. Shanghai: East China University of Science and Technology Press, 2009:158-159.
[31] 魏君怡, 李勇, 薛向欣. 基于离子液体的“可设计性”和“软酸”性质萃取分离电镀污泥中Cr6+/Fe3+[J]. 化工学报, 2017(9):138-145.
WEI Junyi, LI Yong, XUE Xiangxin. Cr6+/Fe3+ extraction separation from electroplating sludge based on designability and soft acidity of ionic liquids[J]. CIESC Journal, 2017(9):138-145.
[32] 王献伟, 王芳芳. 重铬酸钾在银胶中的表面增强Raman散射研究[J]. 中国科技信息, 2005, 13:14.
WANG Xianwei, WANG Fangfang. Study on surface enhanced Raman scattering of potassium dichromate in silver colloid[J]. China Science and Technology Information, 2005, 13:14.
[33] RUBINSON K A, RUBINSON J F. Contemporary instrumental analysis[M]. Beijing: Science Press, 2003:467-469.
[34] 葛战勤, 杨永会. 伯胺N1923萃取铬(Ⅵ)的研究[J]. 应用化学, 1995, 12(3):57-60.
GE Zhanqin, YANG Yonghui. Study on the extraction of chromium(Ⅵ) by primary amine N1923[J]. Chinese Journal of Applied Chemistry, 1995, 12(3):57-60.
[35] WU H, LI L, CHANG K K, et al. Graphene oxide decorated nanoscale iron sulfide for highly efficient scavenging of hexavalent chromium from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2020. DOI: 10.1016/j.jece.2020.103882.
doi: 10.1016/j.jece.2020.103882
[36] CHEN J J, WU H, XU L X, et al. New insights into colloidal GO, Cr(Ⅵ) and Fe(Ⅱ) interaction by a combined batch, spectroscopic and DFT calculation investigation[J]. Journal of Molecular Liquids, 2021. DOI: 10.1016/j.molliq.2021.116365.
doi: 10.1016/j.molliq.2021.116365
[1] YANG Li, WANG Tao, SHI Xianbing, HAN Zhenbang. Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation [J]. Journal of Textile Research, 2022, 43(09): 149-155.
[2] YANG Honglin, XIANG Wei, DONG Shuxiu. Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites [J]. Journal of Textile Research, 2022, 43(08): 107-112.
[3] XIE Mengyu, HU Xiaolin, LI Xing, QU Jian'gang. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite [J]. Journal of Textile Research, 2022, 43(04): 117-123.
[4] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[5] WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60.
[6] ZOU Lihua, YANG Li, LAN Chuntao, RUAN Fangtao, XU Zhenzhen. Electromagnetic shielding properties of graphene oxide/polypyrrole coated cotton fabric with layer-by-layer assembling method [J]. Journal of Textile Research, 2021, 42(12): 111-118.
[7] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[8] YU Rufang, HONG Xinghua, ZHU Chengyan, JIN Zimin, WAN Junmin. Electrical heating properties of fabrics coated by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(10): 126-131.
[9] LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material [J]. Journal of Textile Research, 2021, 42(02): 142-147.
[10] GUAN Binbin, LI Qing, CHEN Linghui, XU Yuting, FAN Zenglu. Fluorescence detection of Cr(VI) from printing and dyeing wastewater by zirconium-organic framework [J]. Journal of Textile Research, 2021, 42(02): 122-128.
[11] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[12] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[13] FANG Zhou, SONG Leilei, SUN Baojin, LI Wenxiao, ZHANG Chao, YAN Jun, CHEN Lei. Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants [J]. Journal of Textile Research, 2020, 41(08): 135-144.
[14] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide/poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[15] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots/polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!