Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (06): 127-134.doi: 10.13475/j.fzxb.20240706601

• Textile Engineering • Previous Articles     Next Articles

Aging properties of acoustic-absorbing composites from palm fiber

ZHANG Yi1(), SHEN Yin2, GAO Jinxia3, YU Chongwen4   

  1. 1. Zhejiang Industry Polytechnic College, Shaoxing, Zhejiang 312000, China
    2. Shaoxing China Textile Union Inspection Technical Services Co., Ltd., Shaoxing, Zhejiang 312030, China
    3. Shaoxing Touzhen Textile Co., Ltd., Shaoxing, Zhejiang 312033, China
    4. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2024-07-30 Revised:2025-01-19 Online:2025-06-15 Published:2025-07-02

Abstract:

Objective Since 2022, the production of jute-based acoustic-absorbing composite materials has declined due to reduced imports of raw jute materials. Automotive interior manufacturers are actively exploring new types of fibers that can either be blended with or partially replace jute in the production of acoustic materials. Through a comparative study on the aging properties of palm fiber acoustic-absorbing composites and widely used jute fiber acoustic interior panels in the market, this research further investigates the feasibility of substituting jute-based panels with palm fiber composites while improving the durability of such acoustic-absorbing interior components.

Method Palm fiber felt/ceramic/poly(3-hydroxy-butyrate-co-3-hydroxy-valerate) (PHBV) acoustic-absorbing composite and jute fiber felt/PHBV acoustic-absorbing interior panels were studied under the natural light aging, hot-humid aging and ultraviolet light aging with the average values of tensile strength, bending strength, un-notched impact strength and sound absorption coefficient, bacteriostatic rate under natural light aging and hot-humid aging process. The water absorption rate and thickness-direction expansion rate of the acoustic-absorbing composite were analyzed. The lignin content, the composite's appearance change, the tensile section morphology and the chemical junction of the two fibers were tested under ultraviolet irradiation. The residual strength model was used to predict the mechanical properties under natural light aging.

Results Under natural light aging process, the average values of tensile strength, bending strength, unnotched impact strength and acoustic absorbing coefficient of the two kinds of acoustic-absorbing composite materials decreased gradually with extended treatment time. The water absorption rate and thickness expansion rate of the two types of acoustic-absorbing composites increased rapidly with the increase of the humidity and heat temperature, but the bacteriostatic rate decreased rapidly. According to the water transport dynamics equation, for the palm acoustic composite material at 65 ℃, which could initially determine that it conformed to the Fickian water absorption model. With the increase of aging times under the ultraviolet light, the tensile strength, bending strength and unnotched impact strength all increased first and then decreased, and the mean value of acoustic-absorbing coefficient decreased gradually. The lignin content of the two fibers decreased with the increase of irradiation times. It had certain antibacterial effect on staphylococcus aureus and escherichia coli. At the same time, the surface of the two composite materials were discolored and cracks appeared, the appearance of the treated palm fiber acoustic-absorbing composite material became darker, and the surface became rough and uneven. Under the condition of 4 000-500 cm-1 band, there were five characteristic absorption peaks of palm fiber acoustic composite, which are 3 280, 1 731, 1 376, 1 158 and 709 cm-1. Among them, 3 280, 1 158 and 709 cm-1 were speculated as O—H bond vibration, C—O ether bond stretching vibration and C—H group vibration after degradation of PHBV. The residual strength model was used to predict the tensile strength and bending strength under natural light process. After 1 095 d (3 a), the tensile strength and bending strength of the material was 24.97 MPa and 44.93 MPa respectively. After 1 825 days (5 a), the tensile strength was 22.51 MPa and the bending strength was 41.94 MPa.

Conclusion Under the natural light aging, hot-humid aging and ultraviolet light aging, the palm acoustic composite could replace the jute acoustic interior panel completely. The water absorption rate and thickness expansion rate of the composite increased with the increase of temperature and tended to balance in the later stage. The decrease of fiber lignin content was an important reason for the degradation of properties of ultraviolet light aging composites. According to the residual strength model, under the natural light aging process, the tensile strength and bending strength of the palm acoustic absorbing composite material after 1 095 d and 1 825 d could also reach the tensile strength and bending strength of the standard specified in QC/T 906—2013 ″Technical Requirements and Test Methods for Bast Fiber Composite Panels for Automotive Interior Parts″.

Key words: palm fiber felt, acoustic absorbing coefficient, aging property, hot-humid aging, automotive interior material, residual strength model, acoustic-absorbing composite material

CLC Number: 

  • TS102.2

Tab.1

Properties of two kinds of acoustic-absorbing composites under natural light aging degradation"

老化
时间/
d
拉伸强度/
MPa
弯曲强度/
MPa
无缺口冲击
强度/(kJ·m-1)
吸声系数
平均值
抑菌率/%
对金黄色葡萄球菌 对大肠埃希菌
棕榈
纤维
黄麻
纤维
棕榈
纤维
黄麻
纤维
棕榈
纤维
黄麻
纤维
棕榈
纤维
黄麻
纤维
棕榈
纤维
黄麻
纤维
棕榈
纤维
黄麻
纤维
0 36.5 32.9 53.8 54.4 6.1 5.9 0.63 0.65 70.28 73.35 77.52 78.20
60 35.3 32.2 53.1 53.9 6.0 5.7 0.62 0.62 61.39 64.28 68.03 71.08
120 34.4 31.1 52.6 53.2 5.8 5.0 0.58 0.53 50.16 54.55 57.39 60.15
180 33.6 30.1 51.9 51.7 5.2 4.4 0.49 0.46 34.39 40.47 48.06 49.52
240 32.7 29.6 51.6 51.2 5.0 4.2 0.43 0.42 19.76 23.33 34.30 37.71
300 32.2 29.2 50.4 50.9 4.8 4.1 0.42 0.41 15.82 19.75 23.15 26.69

Tab.2

Water absorption and thickness direction expansion rate of two kinds of acoustic-absorbing composites under hot-humid ageing"

老化
时间/d
吸水率/% 厚度方向膨胀率/%
棕榈纤维 黄麻纤维 棕榈纤维 黄麻纤维
25 ℃ 45 ℃ 65 ℃ 25 ℃ 45 ℃ 65 ℃ 25 ℃ 45 ℃ 65 ℃ 25 ℃ 45 ℃ 65 ℃
20 0.3 1.1 2.1 0.2 0.9 1.6 0.22 2.27 4.08 0.19 2.09 4.02
40 1.2 2.8 3.5 0.8 2.3 3.2 0.54 3.59 6.35 0.49 3.38 6.17
60 1.9 4.1 5.3 1.5 3.6 5.2 0.67 4.88 8.22 0.62 4.56 7.95
80 2.8 4.7 6.4 2.1 4.3 6.1 0.85 6.21 9.19 0.81 5.92 9.01
100 2.9 4.9 6.6 2.3 4.5 6.2 1.13 6.25 9.21 1.09 5.99 9.05

Tab.3

Properties of two kinds of acoustic-absorbing composites at 65 ℃ and 90% relative humidity"

老化
时间/
d
拉伸强度/MPa 弯曲强度/MPa 无缺口冲击强度/
(kJ·m-1)
吸声系数平均值 抑菌率/%
对金黄色葡萄球菌 对大肠埃希菌
棕榈纤维 黄麻纤维 棕榈纤维 黄麻纤维 棕榈纤维 黄麻纤维 棕榈纤维 黄麻纤维 棕榈纤维 黄麻纤维 棕榈纤维 黄麻纤维
0 36.5 32.9 53.8 54.4 6.1 5.9 0.63 0.65 70.28 73.35 77.52 78.20
20 36.8 33.4 54.1 54.9 6.0 5.7 0.62 0.62 56.29 58.60 61.31 65.29
40 37.1 34.7 54.5 55.3 5.7 5.4 0.57 0.59 29.37 36.19 44.86 47.71
60 35.9 33.2 54.0 53.9 5.5 5.3 0.54 0.55 12.59 22.12 26.23 32.80
80 33.7 31.5 53.2 53.2 5.4 5.1 0.52 0.54 5.24 8.90 10.09 13.54
100 30.5 29.8 52.1 52.4 5.1 4.9 0.50 0.51 0.00 0.00 0.00 0.00

Tab.4

Properties of two acoustic-absorbing composites and lignin content of palm fiber and jute fiber under ultraviolet light aging"

老化
时间/h
拉伸强度/MPa 弯曲强度/MPa 无缺口冲击强度/(kJ·m-1) 吸声系数平均值 纤维毡中木质素含量/%
棕榈纤维 黄麻纤维 棕榈纤维 黄麻纤维 棕榈纤维 黄麻纤维 棕榈纤维 黄麻纤维 棕榈纤维 黄麻纤维
0 36.5 32.9 53.8 54.4 6.1 5.9 0.63 0.65 11.72 12.95
120 37.2 33.6 54.6 55.1 6.4 6.3 0.58 0.59 10.09 11.58
240 36.1 32.9 53.9 54.1 5.7 5.8 0.51 0.50 9.27 10.30
360 35.2 31.8 52.7 53.0 5.1 5.2 0.49 0.44 7.83 8.65
480 33.5 30.4 51.0 51.5 4.8 4.8 0.48 0.43 7.42 7.92
600 31.6 29.1 49.6 50.1 4.5 4.4 0.46 0.42 7.35 7.61

Fig.1

Surface morphology of palm acoustic-absorbing composites before (a) and after (b) ultraviolet light aging treatment"

Fig.2

Tensile profile of palm acoustic-absorbing composites before (a)and after (b) ultraviolet light aging treatment"

Fig.3

FT-IR spectra of palm acoustic-absorbing composites before and after ultraviolet light aging treatment"

[1] 杨宝奎, 张亮亮. 新能源汽车内饰轻量化设计研究[J]. 汽车测试报告, 2023(21):76-78.
YANG Baokui, ZHANG Liangliang. Research on light weight design of new energy vehicle interior[J]. Vehicle Test Report, 2023(21):76-78.
[2] AHMAD F, CHOI Hs, PARK Mk. A review: natural fiber composites selection in view of mechanical, light weight, and economic properties[J]. Macromolecular Materials and Engineering, 2015, 300(1):10-24.
[3] 张毅, 邵利锋, 杨彬, 等. 棕榈纤维毡/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)热压复合材料的吸声性能[J]. 纺织学报, 2022, 43(10):24-30.
ZHANG Yi, SHAO Lifeng, YANG Bin, et al. Acoustic properties of palm fiber felt/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hot-pressed composites[J]. Journal of Textile Research, 2022, 43(10):24-30.
doi: 10.13475/j.fzxb.20210804907
[4] 张琨. 汽车内饰板注塑工艺优化和质量控制[D]. 上海: 上海交通大学,2022:14-15.
ZHANG Kun. Quality control and process optimization of automobile interior panel injection molding[D]. Shanghai: Shanghai Jiao Tong University,2022:14-15.
[5] 胡建鹏, 姚利宏, 邢东, 等. 天然植物纤维增强聚乳酸复合材料老化降解性能研究进展[J]. 林产工业, 2022, 59(6):29-34.
HU Jianpeng, YAO Lihong, XING Dong, et al. Research progress on the aging and degradation properties of natural plant fiber reinforced polylactic acid composites[J]. China Forest Products Industry, 2022, 59(6):29-34.
[6] 陈旭, 刘燕峰, 刘青曼, 等. 苎麻纤维增强复合材料的光老化性能[J]. 工程塑料应用, 2021, 49(4):98-103.
CHEN Xu, LIU Yanfeng, LIU Qingman, et al. Photo aging properties of ramie fiber reinforced composites[J]. Engineering Plastics Application, 2021, 49(4):98-103.
[7] 吴瑞, 李岩, 于涛. 不同种类纤维增强复合材料湿热老化性能对比[J]. 复合材料学报, 2022, 39(9):4406-4419.
WU Rui, LI Yan, YU Tao. Comparative study on the hygrothermal durability of different fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9):4406-4419.
[8] 何莉萍, 刘龙镇, 苏胜培, 等. 纤维含量对黄麻纤维增强树脂基复合材料力学与热性能的影响[J]. 复合材料学报, 2023, 40(4):2038-2048.
HE Liping, LIU Longzhen, SU Shengpei, et al. Effects of fiber addition on the mechanical and thermal properties of jute fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4):2038-2048.
[9] 柏育材, 王志健. 交通噪声防治措施及降噪材料研究进展[J]. 上海船舶运输科学研究所学报, 2023, 46(6):60-66.
BAI Yucai, WANG Zhijian. Research advances in traffic noise control measures and materials[J]. Journal of Shanghai Ship and Shipping Research Institute, 2023, 46(6):60-66.
[10] 王威力, 魏程, 田晶. 碳纤维复合材料的湿热老化模型研究[J]. 复合材料科学与工程, 2023(11):44-48.
WANG Weili, WEI Cheng, TIAN Jing. Research on hygrothermal ageing models of carbon fiber compo-sites[J]. Composite Materials Science and Engineering, 2023(11):44-48.
[11] 杨宇腾. 岩土工程用玄武岩纤维复合材料耐久性研究[J]. 粘接, 2024, 51(3):69-72.
YANG Yuteng. Durability study of basalt fiber composite materials for geotechnical engineering[J]. Adhesion, 2024, 51(3):69-72.
[12] 聂文琪, 许帅, 高俊帅, 等.聚(3-羟基丁酸-co-3-羟基戊酸酯)改性涤纶长丝的降解性能[J]. 纺织学报, 2023, 44(9):35-42.
NIE Wengqi, XU Shuai, GAO Junshuai, et al. Degradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) modified polyester composite filament[J]. Journal of Textile Research, 2023, 44(9):35-42.
[13] JOSEPH P V, RABELLO M S, MATTOSO L H C, et al. Environmental effects on the degradation behaviour of sisal fiber reinforced PP composites[J]. Composites Science and Technology, 2002, 62(10):1357-1358.
[14] 杨坚, 陈润宇, 杨晨, 等.聚(3-羟基丁酸酯-co-3-羟基戊酸酯)中β晶的形成与转变[J]. 高分子通报, 2023, 36(7):851-860.
YANG Jian, CHEN Runyu, YANG Chen, et al. The formation and transformation of β-form crystals in poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[J]. Polymer Bulletin, 2023, 36(7):851-860.
[15] 钱红飞, KOBIR MD Foysal, 陈龙, 等. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(3):104-110.
QIAN Hongfei, KOBIR MD Foysal, CHEN Long, et al. Structure of polylactide/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blend fibers and dyeing properties for their fabrics[J]. Journal of Textile Research, 2023, 44(3):104-110.
[16] 胡晓兰, 自雅娴, 兰茜, 等. 阻燃黄麻纤维/聚酯纤维复合材料的紫外老化性能[J]. 高分子材料科学与工程, 2022, 38(2):109-114.
HU Xiaolan, ZI Yaxian, LAN Xi, et al. Ultraviolet aging properties of flame retardant jute fiber/polyester fiber composites[J]. Polymer Materials Science and Engineering, 2022, 38(2):109-114.
[17] 李友明, 景昭, 吴增文, 等. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测[J]. 强度与环境, 2024, 51(1):23-25.
LI Youming, JING Zhao, WU Zengwen, et al. Residual stiffness-residual strength correlated model and life prediction of composite materials under random fatigue loading[J]. Structure & Environment Engineering, 2024, 51(1):23-25.
[1] ZHANG Yi, SHAO Lifeng, YANG Bin, GAO Jinxia, YU Chongwen. Acoustic properties of palm fiber felt/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hot-pressed composites [J]. Journal of Textile Research, 2022, 43(10): 24-30.
[2] . Cold plasma treatment and aging properties of aramid fiber [J]. Journal of Textile Research, 2018, 39(11): 73-78.
[3] . Relationship between sound absorption property and needling techniques of automotive interior materials made of hemp fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 45-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!