Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (10): 86-94.doi: 10.13475/j.fzxb.20250201201
• Textile Engineering • Previous Articles Next Articles
ZHANG Hongxia1, QI Fangxi2, ZHAO Jing1, XING Yi2, LÜ Zhijia1,3(
)
CLC Number:
| [1] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177. |
| TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177. | |
| [2] |
WU D, WENG L, ZHANG X R, et al. Flexible, wearable multilayer piezoresistive sensor based on mulberry silk fabric for human movement and health detection[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(16): 1313.
doi: 10.1007/s10854-023-10691-5 |
| [3] |
ZHANG E Y, CAO X L, WEI X L, et al. A flexible, wearable, and interference-resistant self-powered sensor for body motion assessment[J]. ACS Applied Electronic Materials, 2024, 6(11): 7720-7727.
doi: 10.1021/acsaelm.4c01209 |
| [4] |
HOSSAIN I Z, KHAN A, HOSSAIN G. A piezoelectric smart textile for energy harvesting and wearable self-powered sensors[J]. Energies, 2022, 15(15): 5541.
doi: 10.3390/en15155541 |
| [5] |
MAO A Q, LU W Y, JIA Y G, et al. Flexible piezoelectric devices and their wearable applica-tions[J]. Journal of Inorganic Materials, 2023, 38(7): 717.
doi: 10.15541/jim20220549 |
| [6] | 张蕊, 叶苏娴, 王建, 等. 全织物型离电式柔性压力传感器的制备及其性能[J]. 纺织学报, 2025, 46(2): 113-121. |
|
ZHANG Rui, YE Suxian, WANG Jian, et al. Preparation and performance of all-fabric iontronic flexible pressure sensor[J]. Journal of Textile Research, 2025, 46(2): 113-121.
doi: 10.1177/004051757604600206 |
|
| [7] | 岳欣琰, 邵剑波, 王小虎, 等. 基于镀银锦纶/锦纶/水性聚氨酯复合纱的一维结构柔性电容传感器[J]. 纺织学报, 2025, 46(3): 82-89. |
|
YUE Xinyan, SHAO Jianbo, WANG Xiaohu, et al. One-dimensional structured flexible capacitive sensors based on silver coated polyamide fiber/polyamide fiber/waterborne polyurethane composite yarns[J]. Journal of Textile Research, 2025, 46(3): 82-89.
doi: 10.1177/004051757604600202 |
|
| [8] |
WANG M, LI Y H, SHI Y Y, et al. A new planar capacitive sensor with high sensitivity for proximity sensing of an approaching conductor[J]. Sensor Review, 2024, 44(2): 90-99.
doi: 10.1108/SR-10-2023-0562 |
| [9] | HE Z F, CHEN W J, LIANG B H, et al. Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12816-12823. |
| [10] |
YE X R, TIAN M W, LI M, et al. All-fabric-based flexible capacitive sensors with pressure detection and non-contact instruction capability[J]. Coatings, 2022, 12(3): 302.
doi: 10.3390/coatings12030302 |
| [11] |
DÍAZ-FERNÁNDEZ A, DE-LOS-SANTOS-ÁLVAREZ N, LOBO-CASTAÑÓN M J. Capacitive spectroscopy as transduction mechanism for wearable biosensors: opportunities and challenges[J]. Analytical and Bioanalytical Chemistry, 2024, 416(9): 2089-2095.
doi: 10.1007/s00216-023-05066-y |
| [12] |
XU Z W, ZHENG S D, WU X T, et al. High actuated performance MWCNT/Ecoflex dielectric elastomer actuators based on layer-by-layer structure[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105527.
doi: 10.1016/j.compositesa.2019.105527 |
| [13] |
LI S M, LI R Q, CHEN T J, et al. Highly sensitive and flexible capacitive pressure sensor enhanced by weaving of pyramidal concavities staggered in honeycomb matrix[J]. IEEE Sensors Journal, 2020, 20(23): 14436-14443.
doi: 10.1109/JSEN.7361 |
| [14] | YANG J C, KIM J O, OH J, et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19472-19480. |
| [15] |
肖渊, 童垚, 胡呈安, 等. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
doi: 10.13475/j.fzxb.20230705701 |
|
XIAO Yuan, TONG Yao, HU Cheng'an, et al. Preparation of all-fabric flexible piezoresistive sensors based on conductive composite coating[J]. Journal of Textile Research, 2024, 45(10): 152-160.
doi: 10.13475/j.fzxb.20230705701 |
|
| [16] |
XIAO Y, HU H C, GUO D Y, et al. A jet printing highly sensitive cotton/MWCNT fabric-based flexible capacitive sensor[J]. Sensors and Actuators A: Physical, 2023, 351: 114152.
doi: 10.1016/j.sna.2023.114152 |
| [17] |
CHEN Y X, WANG Z H, XU R, et al. A highly sensitive and wearable pressure sensor based on conductive polyacrylonitrile nanofibrous membrane via electroless silver plating[J]. Chemical Engineering Journal, 2020, 394: 124960.
doi: 10.1016/j.cej.2020.124960 |
| [18] | SU Z Y, XU D, LIU Y C, et al. All-fabric tactile sensors based on sandwich structure design with tunable responsiveness[J]. ACS Applied Materials & Interfaces, 2023, 15(26): 32002-32010. |
| [19] |
ZHAO B Y, DONG Z J, CONG H L. A wearable and fully-textile capacitive sensor based on flat-knitted spacing fabric for human motions detection[J]. Sensors and Actuators A: Physical, 2022, 340: 113558.
doi: 10.1016/j.sna.2022.113558 |
| [20] |
ZHANG Q, WANG Y L, XIA Y, et al. Textile-only capacitive sensors with a lockstitch structure for facile integration in any areas of a fabric[J]. ACS Sensors, 2020, 5(6): 1535-1540.
doi: 10.1021/acssensors.0c00210 pmid: 32515186 |
| [21] | 李悦. 自组装分子膜镀银纱线的制备及在电加热织物上的应用[D]. 天津: 天津工业大学, 2022: 3-15. |
| LI Yue. Preparation of self-assembled molecular membrane silver-plated yarn and its application to electrically heated fabrics[D]. Tianjin: Tiangong University, 2022: 3-15. | |
| [22] |
EMELYANENKO K A, CHULKOVA E V, SEMILETOV A M, et al. The potential of the superhydrophobic state to protect magnesium alloy against corrosion[J]. Coatings, 2022, 12(1): 74.
doi: 10.3390/coatings12010074 |
| [23] | 孔令杰, 高晓红, 贾雪平. 纳米银负载对棉织物活性染料染色的影响[J]. 纺织学报, 2015, 36(7): 61-65. |
| KONG Lingjie, GAO Xiaohong, JIA Xueping. Influence of nano silver loading on dyeing property of cotton fabric[J]. Journal of Textile Research, 2015, 36(7): 61-65. | |
| [24] | PALANISAMY S, TUNAKOVA V, TUNAK M, et al. Textile-based weft knit strain sensor: experimental investigation of the effect of stretching on electrical conductivity and electromagnetic shielding[J]. Journal of Industrial Textiles, 2022, 52: 15280837221142825. |
| [25] |
RAJABOV I. Development of a theoretical model for the breathability of textile fabrics[J]. Journal of Applied Data Sciences, 2024, 5(4): 1925-1938.
doi: 10.47738/jads |
| [26] |
YANG Y, YU X, WANG X G, et al. Thermal comfort properties of cool-touch nylon and common nylon knittedfabrics with different fibre fineness and cross-section[J]. Industria Textila, 2021, 72(2): 217-224.
doi: 10.35530/IT |
| [27] |
MEYER P M, FORRESTER M, COCHRAN E W. Synthesis of laboratory nylon: a scale-up method for high molecular weight polyamides[J]. Industrial & Engineering Chemistry Research, 2024, 63(45): 19506-19514.
doi: 10.1021/acs.iecr.4c03175 |
| [1] | XIAO Yuan, LI Hongying, LI Qian, ZHANG Wei, YANG Pengcheng. Preparation of flexible sensor with composite dielectric layer of cotton fabric/polydimethylsiloxane [J]. Journal of Textile Research, 2021, 42(05): 79-83. |
|
||