消防员个人防护装备用智能纺织品研究进展
Research progress in intelligent textiles for firefighter's personal protective equipment
通讯作者:
收稿日期: 2024-12-20 修回日期: 2025-01-18
| 基金资助: |
|
Received: 2024-12-20 Revised: 2025-01-18
作者简介 About authors
刘烨(1993—),男,助理研究员,博士。主要研究方向为纤维材料和消防员个人防护装备。
为提升消防员在复杂救援环境中的安全保障和作业效率,综述了智能纺织品在促进个人防护装备功能升级方面的作用。首先概述了应用于消防员个人防护装备的智能纺织品所涉及的关键纤维材料和功能材料;介绍了制备智能纺织品的多种复合成形技术,包括从纤维、纱线和织物多维度进行功能改性和结构优化。其次,从功能器件角度,对智能纺织品在消防员个人防护装备领域的热管理、能量收集与存储、以及传感响应等方面的最新研究进展进行了论述,综合对比了不同器件的结构与性能的关系。最后,从材料开发、性能提升、装备集成和标准评价等方面,对智能纺织品在消防员个人防护装备中的潜在应用前景及其面临的挑战进行了探讨。
关键词:
Significance Firefighters on the frontline of rescue missions rely on personal protective equipment to protect them from the hazards of the harsh environment. As the diversity and complexity of rescue scenarios increase, there is a growing demand for personal protective equipment to offer multifunctionality beyond basic protection. Intelligent textiles, which combine the comfort of traditional textiles with the intelligence of electronic devices, have become a research focus in recent years and are widely applied across various fields. Integrating intelligent textiles into firefighter's personal protective equipment is expected to significantly enhance safety protection and improve rescue efficiency. The research progress in intelligent textiles used in firefighter's personal protective equipment is reviewed, aiming to inspire the relevant research and facilitate the translation of research findings into practical applications.
Progress In order to develop intelligent textiles for firefighter's personal protective equipment, various flame-retardant fibers and functional nanomaterials have been adopted. Different manufacturing processes, such as wet spinning, printing, and coating, are employed to construct one-dimensional (1-D) fiber/yarn, two-dimensional (2-D) fabric/film, and three-dimensional (3-D) braid architecture/aerogel block type intelligent textiles. The development of these intelligent textiles mainly focuses on the actual demands of thermal management, energy conversion and storage, and sensing response. Passive radiative cooling, phase change materials, and shape memory materials are widely adopted to improve the comfort and thermal protection of firefighters. In terms of energy conversion, triboelectric nanogenerators and thermoelectric devices are adopted to collect human body and environmental energy to generate electricity. Many researches focus on material combination and structural optimization to improve the performance and stability of devices in high-temperature environments. Regarding flexible energy storage devices, the modification of flexible electrodes and gel electrolytes allows supercapacitors and lithium-ion batteries to be well integrated into intelligent textiles. In addition, textiles-based sensors with various functions have been developed, such as temperature sensing, high-temperature warning, human motion state recognition, and environmental condition monitoring. Researchers are also focusing on developing the self-powered and multifunctional coupled sensors. These functional textiles are strategically integrated into firefighter's personal protective equipment-including clothing, gloves, and boot-through advanced techniques such as interwoven structures, multilayer lamination, and precision stitching. The advanced personal protective equipment demonstrates good performance, which is expected to significantly improve firefighter safety in high-risk environments.
Conclusion and Prospect The integration of intelligent textiles into firefighter's personal protective equipment has been well demonstrated in different scenarios. Considering the harshness of the firefighter rescuing environment, there are higher demands for the stability and durability of intelligent textiles. At present, research has focused on developing various intelligent textiles with different structures to improve performance, but still many challenges should be overcome when it comes to practical applications. Major limitations include: (1) Insufficient temperature regulation capacity of thermal management systems, where phase change materials face leakage risks and shape memory materials exhibit delayed responsiveness; (2) limited energy conversion efficiency and compromised durability of wearable energy devices in extreme temperatures; (3) multifunctional sensing textiles struggle to achieve simultaneous high sensitivity and reliable signal discrimination under complex interference. Addressing these issues requires innovative approaches integrating hierarchical material design, hybrid energy systems, and AI-enhanced adaptive algorithms to advance next-generation intelligent textiles. Besides, it is necessary to explore the effective integration of intelligent textiles with firefighter's personal protective equipment in combination with ergonomics. Considering the long-term and frequent use of personal protective equipment, it is also critical to pay attention to the impact of washing, aging, and other conditions on performance. Furthermore, establishing standard evaluation methods of various intelligent textiles will be helpful to compare the different functional devices, thereby improving their reliability and efficiency in the practical application. In short, extensive and in-depth research of intelligent textiles will promote the upgrade of firefighter's personal protective equipment, which will play a more important role in firefighting rescue operations.
Keywords:
本文引用格式
刘烨, 王俊胜, 金星.
LIU Ye, WANG Junsheng, JIN Xing.
近年来,出现了一些智能纺织品在消防员个人防护装备的应用探究。不同于一般的服用纺织品,考虑到救援场景中高温等危险因素,其还需满足阻燃、隔热、耐磨等需求。本文主要从应用于消防员个人防护装备的智能纺织品材料和功能器件开发2个方面对当前的研究进展进行综述,并提出未来研究展望。
1 智能纺织品的材料选择
智能纺织品以纺织材料为主要基材,通过功能材料的引入和结构设计,实现调温、储能、传感和显示等功能。在设计开发用于消防救援领域智能纺织品时,必须要考虑阻燃性、耐用性以及易与装备集成等应用场景的实际需求[13]。此外,经过功能性处理后,智能纺织品需保持良好的透气性和穿着舒适性。
1.1 纤维材料
纤维作为构成纺织集合体的基本单元,不仅需要具备良好的柔韧性和力学性能,而且在消防员个人防护装备中,还须具备阻燃特性。阻燃纤维可以分为2大类:本征阻燃纤维和改性阻燃纤维[14]。
本征阻燃纤维通常指无需添加任何阻燃剂而本身具有阻燃特性的纤维,例如芳纶、聚酰亚胺(PI)纤维、聚苯并咪唑(PBI)纤维、聚对苯撑苯并二噁唑(PBO)纤维和海藻酸盐类纤维等。这些纤维因其独特的化学结构和所含阻燃基团而展现出卓越的阻燃效果,通常是消防员个人防护装备特别是服装类装备的首选。
1.2 功能材料
智能化的实现依赖于功能材料的应用,按照消防员个人防护装备用智能纺织品的功能特性,可分为热管理材料、能量转换和存储材料、以及传感材料等。
通用的能量转换材料按照转换机制来分,包括摩擦电材料、热电材料和压电材料等。储能器件主要有超级电容器和和电池2大类,由电极材料、活性材料和电解质等组成。用于传感器开发的材料主要为各种敏感材料。具体的材料应用需考虑实际使用场景的需要,在相应的功能器件部分有具体的介绍。其中,碳基纳米材料(如碳纳米管(CNTs)、石墨烯、氧化石墨烯(GO)等)、导电聚合物(如聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)和聚吡咯(PPy))、金属和半导体纳米颗粒、以及二维MXene等关键功能材料具有导电和刺激响应等多功能特性,可以满足多种应用需求,是构建柔性功能器件的基础[22]。
1.3 复合材料及其成形方式
阻燃纤维与功能材料复合的方式多种多样,可以根据不同的应用场景和性能要求选择合适的复合方式。常见的复合方式包括:湿法纺丝、静电纺丝、浸渍、涂层、模板辅助生长和印刷等。纤维与功能材料复合,进而可以组装成一维纤维/纱线状、二维织物/薄膜状、三维编织/块体结构智能纺织品,并被集成于不同的消防员个人防护装备中。
He等[23]利用湿法纺丝、溶剂交换和冷冻干燥工艺,制备得到具有“表层致密,芯层多孔”结构的海藻酸钙/Fe3O4复合气凝胶纤维。之后,在气凝胶纤维表面交替喷涂磷酸铵和银纳米线(Ag NWs),提高了纤维的热稳定性和导电性。这种气凝胶纤维因其独特的结构和性能,被编织成超轻型自供能智能纺织品。Xu等[24]对用于构建柔性传感器的纱线进行结构设计,首先将阻燃粘胶纤维与CNT墨水混合,通过环锭纺纱工艺制备了具有不同捻度和细度的导电阻燃粘胶纱。接着将PI纤维通过梳理机转化为短纤维束,然后通过摩擦纺纱机将这些纤维束螺旋包裹在导电阻燃粘胶纱的表面,形成具有皮芯结构的复合纱线。最后采用特殊的锁缝结构将复合纱线缝合到消防服上,通过调整缝合密度来改变织物传感器的压力分布和变形能力。此外,也可以直接在阻燃织物表面进行功能处理。例如,Luo等[25]通过激光直写技术在PBO织物表面刻蚀,制备了Janus结构石墨烯/PBO织物。该复合织物兼具PBO的阻燃性和石墨烯的响应特性,表现出优异的热防护和传感功能。这些复合和组装技术的发展,为消防员个人防护装备中纺织品的智能化提供了有效的技术支持。
2 消防员防护装备功能器件开发
智能纺织品在消防员个人防护装备中的应用旨在确保穿戴舒适性的基础上实现多样化功能,为消防员执行救援任务提供更高层次的安全保障。根据实际救援场景的需求,智能纺织品构成的功能器件主要分为以下几个类别:热管理、能量转换与存储、以及传感响应等,如图1所示。当前的研究重点集中在材料创新和结构优化上,目的是提升功能器件的性能,并实现它们之间的有效集成和多功能耦合。
图1
图1
智能纺织品在消防员个人防护装备中的多功能应用
Fig.1
Multifunctional application of intelligent textiles on firefighter's personal protective equipment
2.1 热管理功能器件
传统的个人防护装备虽然能够提供必要的防护,但往往因其厚重和透气性差导致消防员在执行任务时出汗过多,甚至出现热应激问题[26],而在寒冷的冬季,尽管通过增加衣物层数或加厚设计可以在一定程度上调节防护装备的热舒适性,但效果有限,因此,随着新材料和技术的发展,实现消防服的智能热调控已成为研究的新趋势。
相变调温是一种利用材料在相变过程中吸收或释放热量的特性来调节温度的技术。将不同的相变材料集成于纺织品中,可以实现自动调温功能。Yu等[27]将PEG添加到芳纶纳米纤维基气凝胶中,由于PEG的吸收和储热能力,所得复合气凝胶在高温下实现了高效的热缓冲性能(潜热为162.5 J/g)。Zhang等[28]开发了一种由阻燃外层(PI-羟基磷灰石-rGO气凝胶织物)和具有相变功能的内层(PI-羟基磷灰石/二十烷织物)组成的双层织物,实现了良好的热防护功能。外层复合气凝胶织物与纯PI气凝胶织物相比,热释放率峰值降低了54.7%,与商业芳纶织物相比降低了70.0%,显示出卓越的阻燃性能。内层含相变材料的复合织物具有高潜热(193.2 J/g),能够通过相变过程中的热缓冲效果延迟温度升高,使消防员的体感保持凉爽舒适。综上,这种双层智能纺织品可以显著延长达到人体皮肤疼痛阈值的时间(280.0 s),远超商业芳纶织物(101.0 s)和玻璃纤维织物(56.5 s),在新型智能消防服开发中显示出巨大潜力。
被动辐射制冷是一种无需外部能量输入的冷却技术,利用具有高太阳光反射率和高红外发射率的材料将热量从人体表面辐射到外太空,从而实现降温效果。Jiang等[29]利用冷冻干燥法制备了一种具有良好隔热和辐射冷却功能的海藻酸钠/SiO2复合多孔气凝胶,应用于消防服时能够有效减少从外部环境吸收的热量,同时增加服装内部热量的耗散。当SiO2的添加量为海藻酸钠的25%时,制备的复合气凝胶实现89%的太阳光(0.3~2.5 μm)反射率,还能通过大气窗口(8~13 μm)将多余的热量传递到外太空,发射率高达97%。其在晴朗天气下温度比纯海藻酸钠气凝胶低9.4 ℃,比模拟环境低22.1 ℃。此外,该气凝胶也表现出比其它常见面料更出色的隔热效果。除材料本身特性外,Zeng等[30]提出了一种形态分级结构响应不同波段的光学超材料织物,具有92.4%的太阳光反射率和94.5%的红外反射率,其覆盖下的模拟皮肤温度可低5~7 ℃,有望应用于新型灭火防护服。
将被动辐射制冷和相变材料复合,可以进一步实现对温度的调控。为此,Ouyang等[31]在海藻酸钠基气凝胶的正反面分别沉积SiO2纳米颗粒层和石蜡/SiO2复合相变微胶囊层。所制备的Janus结构气凝胶具有优异的辐射冷却性能(太阳光反射率为90.0%,选择性红外发射率为98.7%)、储热性能(潜热为127.5 J/g)和阻燃隔热性能(极限氧指数为35.5%)。该气凝胶能够在炎热的夏季降低温度11.5 ℃,并在相变过程中延缓温度上升,在18.4 kW/m2的辐射热暴露下可延迟皮肤二度烧伤时间(约76.6 s),实现消防服在多场景下的有效热管理。
形状记忆材料能够在特定温度下发生预定变形,以调节服装的透气性和隔热性能,适应消防员在不同温度环境下的需求。例如,它可以在高温环境展开以增大隔热空气层厚度且更有利于通风,或在低温环境下收缩以减少热量流失,从而为消防员提供更加舒适和安全的穿着体验。Wang等[32]通过在传统热防护织物中加入由NiTi合金丝组成的形状记忆织物层,开发了一种可以提高热防护和热舒适性的智能织物。该智能织物能显著抑制温度上升,并延长达到特定温度升高的时间,使用间隔为2 cm的形状记忆丝的织物热防护效果最佳。该智能织物还显示出比传统3层织物更高的热阻和更低的蒸发阻力。
2.2 能量转换与存储器件
利用摩擦电、压电、光电和热电效应等,可以将其它形式的能源转换为电能,而能量存储器件,如锂离子电池和超级电容器,在实现柔性化设计后可以方便地集成到消防员个人防护装备中,为智能器件提供稳定的电能。
2.2.1 摩擦纳米发电机
表1 不同摩擦纳米发电机性能对比
Tab.1
| 参考 文献 | 摩擦电正性材料 | 摩擦电负性材料 | 测试 频率/Hz | 电输出性能 | ||
|---|---|---|---|---|---|---|
| Voc/V | Isc/μA | Qsc/nC | ||||
| [37] | 银胶涂覆阻燃棉织物 | PTFE浸渍棉织物 | 3 | 145 | 1.5 | 53 |
| [38] | 铜箔 | PI/rGO/TiO2复合纳米纤维膜 | 3 | 228.26 | 5.22 | 80 |
| [18] | BaTiO3/SiO2/芳纶纳米纤维 复合气凝胶纤维织物 | PTFE织物 | 2 | 15.8 | 0.18 | 6 |
| [40] | 碳基气凝胶 | 氟化乙烯丙烯 | 1 | 80 | 25 μA/m2 | 15 μC/m2 |
| [41] | 锦纶织物 | 不锈钢丝/MXene/PI织物 | 5 | 153 | 13.13 | - |
| [42] | 芳纶纳米纤维膜 | 碳纳米纤维膜 | 1.5 | 24.08 | 0.368 | 6.95 |
| [43] | 聚磺胺纳米纤维膜 | PVA-PTFE纳米纤维膜 | 2 | 26 | 0.25 | - |
注:Voc代表开路电压;Isc代表短路电流;Qsc代表短路电荷转移。
Cheng等[37]将PTFE浸渍的棉织物作为摩擦电负性材料,与银胶涂覆的阻燃棉织物层通过折叠的PTFE薄膜分隔,由此组装成摩擦纳米发电机。在3 Hz的拍打频率下,可实现145 V的开路电压(Voc)和1.5 μA的短路电流(Isc)输出。将制备的摩擦纳米发电机缝制于消防服中,通过拍打发电后可以点亮小灯泡。研究者也展示了制备的摩擦纳米发电机作为森林救援中自供电传感单元,可以实现遇险报警功能。Shi等[38]以静电纺PI纳米纤维/rGO/TiO2混纺纳米纤维膜作为摩擦电负性材料,利用rGO的电子捕获机制与TiO2的界面极化协同增强摩擦电输出性能。与铜箔组装成的摩擦纳米发电机Voc和Isc输出最高可达228.26 V和5.22 μA,300 ℃高温下分别保持19.45%和18.20%。制备的摩擦纳米发电机还被用作消防服自供电传感器,提供实时消防员运动监测和环境温度检测。
在高温场景中器件性能往往会发生急剧下降,通过材料改性和结构设计开发具有稳定输出的摩擦纳米发电机显得尤为重要[39]。为此,多个课题组针对提升性能和高温下稳定运行开展了研究工作。Li等[18]在制备的芳纶纳米纤维/SiO2复合气凝胶纤维中加入BaTiO3纳米颗粒来增加介电性能。与PTFE织物组装形成的摩擦纳米发电机,具有稳定的电输出性能,Voc为15.8 V,在整流后能点亮10盏LED灯泡。此外,由于极好的阻燃特性和稳定的双网络结构,该器件暴露在酒精灯火焰中5 s后,其电输出性能仍能保留94%,适用于高温救援环境中使用。Ahmed等[40]制备了一种间苯二酚-甲醛气凝胶衍生碳基摩擦纳米发电机,并通过引入聚丙烯腈纳米纤维和GO纳米片来增强其导电、机械和摩擦电性能。该器件展现出卓越的热稳定性和摩擦电性能,具有80 V的Voc输出,电流密度高达25 μA/m2。该器件即使在火焰中暴露90 s后也不燃烧,且电输出性能在200℃也可基本维持稳定。当集成到消防靴中时,能够识别消防员在危险情况下的动作,为高温环境下的能量收集和运动监测提供了一种新的方案。最近,Yan等[41]开发了一种由不锈钢芯电极、PI/MXene介电夹层和PI纳米纤维外摩擦层组成的摩擦电纱线,由于MXene的电荷捕获能力,进一步增强了摩擦电性能。与锦纶织物组装成单电极式摩擦纳米发电机,在25 N和3 Hz条件下,Voc为153 V,Isc为13.13 μA,在负载50 MΩ电阻条件下的峰值功率密度为0.84 W/m2。它还表现出卓越的热稳定性,在高达400 ℃的温度下保持稳定的电输出。将制备的摩擦纳米发电机集成到防护服中,可以实时监控消防员的身体活动和位置信息,从而显著提高他们在火灾场景中的安全和操作效率。此外,制备的摩擦纳米发电机还可为电致发光纱线提供电能,提高了在浓烟环境中的能见度。
消防员有时需要面对酸、碱等腐蚀性溶液的泄漏或飞溅等救援场景,需要穿戴化学防护装备。防护装备损坏后如果不能及时察觉,会对消防员的安全和健康构成严重威胁,因此,开发适用于此场景下的自供能可穿戴器件是至关重要的。Feng等[42]开发了一种新型的阻燃、耐酸/碱的间位芳纶/碳纳米纤维基摩擦纳米发电机。其不仅展现了良好的柔韧性和防水透湿性,而且在极端温度和化学环境中保持了极高的稳定性和电输出性能。该设备在250 ℃的高温下仍能保持96.8%的电压输出,并在模拟火灾环境中,其通过运动产生的Voc显著增加,显示出优异的温度感知能力。Chen等[43]使用无针式静电纺丝方法制备了聚磺胺和PVA-PTFE复合纳米纤维膜,与CNTs电极组装成具有耐酸/碱腐蚀的摩擦纳米发电机,其最高Isc和Voc分别达250 nA和26 V。经连续7 d的强酸和强碱溶液处理后,纤维膜的形态、拉伸性能和电输出性能均未受影响。该装置集成于个人防护装备中能够在强腐蚀环境下稳定收集生物运动能量,并实时监测装备是否损坏,可为在高风险情况中的救援人员提供保护。
2.2.2 热电转换器件
热电转换效应是当受热物体中的电子(空穴)由高温区往低温区移动时,产生电流或电荷堆积的一种现象[44]。利用人体与环境的温差发电,是另一种有效的能量转换方式。Li等[45]制备了一种具有高弹、耐高温和阻燃特性的PEDOT:PSS/SWCNT热电气凝胶,具有较大的塞贝克系数(38.9 μV/K)和相对较低的热导率0.074 W/(m·K)。气凝胶在压缩应变增加时,其电导率和热导率显著增强,而塞贝克系数能够很好地保持,导致在80%应变下功率因子显著增强,达到0.58 μW/(m·K2)。由25个气凝胶串联组装的热电器件在300 K的温差下能够产生最大输出功率为400 μW。He等[46]通过交替同轴湿法纺丝工艺制备了一种空穴型(p型)和电子型(n型)交替排列的热电气凝胶纤维,其中n型MXene和p型MXene/SWCNT-COOH作为芯层材料,芳纶纳米纤维作为皮层提供强力和阻燃功能,具有23.76 S/m的高电导率。通过加热p-n结的底部,在热电纤维的两侧产生温差;因此,热流沿着热电纤维从热端传递到冷端从而产生电压。将制备的热电纤维缝入芳纶织物中,得到的热电纺织品在300 ℃的温差下产生7.56 mV的电压,功率密度达到119.79 nW/cm2。
热电器件还可与摩擦纳米发电机耦合,实现能量转换性能的增强。例如,Kong等[47]通过简单的浸渍方法将棉织物与新型阻燃剂结合,并进一步通过引入PEDOT:PSS和聚二甲基硅氧烷(PDMS)作为独立层,赋予了智能纺织品热电性能和摩擦电功能。该材料在76 K的温度差下产生了221 mV的热电输出,并在5 Hz的垂直接触-分离频率下实现了高达138 V的摩擦电输出。
2.2.3 储能器件
目前最为常用的储能器件包括超级电容器和多种离子电池,需要考虑电极的柔性、电解液的阻燃性、安全性和稳定性等多方面因素,同时器件还应具备快速充放电能力、高能量密度和功率密度等[48]。
在超级电容器领域,开发具有高面积比电容和良好阻燃性能的柔性电极材料是实现高性能能量存储的关键。Yu等[49]制备了一种芳纶短纤维/聚苯硫醚复合柔性电极,该电极通过引入MWCNT和原位聚合的PPy,展现出了优异的电化学活性。这种复合电极在5 mA/cm2的电流密度下具有高达约3 205 mF/cm2的面积比电容,并在经过5 000次充放电循环后,其面积比电容在20 mA/cm2和80 mA/cm2的高电流密度下分别保持了93%和70%。此外,该电极在300 ℃退火处理后仍能保持超过50%的面积比电容,且具有良好的阻燃性能和热稳定性能。
开发高性能和阻燃电解质也是构建消防员个人防护装备用超级电容器的关键。Wang等[50]在电极上使用原位交联技术制备了一种新型的离子凝胶超级电容器,具有出色的阻燃性、热稳定性和电化学性能。通过在离子凝胶电解质中引入含醚的柔性链段,实现了室温下高达6.5×10-3 S/cm的离子电导率,且由于原位交联使得电解质与电极之间形成紧密的界面接触,增强了离子传输效率。此外,通过在交联电解质中加入二氮杂萘结构,显著提高了离子凝胶电解质的阻燃性和热稳定性,使其能在150 ℃下保持30 min的尺寸稳定性。优化后的超级电容器展现出105 F/g的比容量和41.6 W·h/kg的能量密度,为柔性超级电容器的设计和制备提供了有效的策略。
开发高安全性的柔性可穿戴电池近年来也受到研究者的关注[51]。Lu等[52]通过旋转多个正负电极纤维来形成对齐的通道,并在每个电极纤维表面设计网络化的通道。这种结构使得单体溶液能够有效地沿对齐的通道和网络化通道渗透,随后单体发生聚合反应形成凝胶电解质,并与电极形成紧密且稳定的界面。所得纤维状锂离子电池展现出高电化学性能,能量密度约为128 W·h/kg,且能够在极端条件下(如-40~80 ℃的温度和-0.08 MPa的真空环境)安全工作,为开发适用于消防员个人防护装备用的高性能阻燃纤维电池提供了一种新的思路。Chen等[53]开发了一种具有高能量密度和电化学性能的纤维状Li-CO2电池,该电池不仅具备防水和阻燃特性,还能在高达300%的应变下保持稳定的性能。该柔性电池可以被集成到消防员个人防护装备中,为在复杂环境中执行任务的消防员提供稳定且灵活的能源支持。当应用于水域救援服时,消防员能够利用呼出的CO2作为能源,为水下作业提供更长的续航能力。
将能量转换器件与储能器件联用,可以实现稳定的能源供给。为此,Mao等[54]报道了一种基于PTFE纱线和PDMS/MnO2纳米线混合弹性体的柔性摩擦纳米发电机/超级电容器一体化系统,该系统不仅能高效地从生物运动中收集能量,还能存储电能,将其集成于纺织品中可为其它电子设备持续供能。
2.3 智能传感器件
消防员在执行救援任务时,常常面临恶劣环境带来的潜在安全风险。为了抵御这些风险,多种集成传感功能的智能纺织品被应用于消防员个人防护装备中。这些智能传感器件根据传感响应的场景,主要分为温度预警传感、生物力传感和环境传感监测等类型。
2.3.1 温度传感
消防员所穿戴的防护装备可能会因救援现场高温而受损,从而增加生命危险,因此,通过集成柔性温度传感器对装备进行实时监测,并在检测到异常高温时及时提醒,可以有效提高对消防员的保护,减少火灾现场的安全风险[55]。多项研究围绕着提高温度监测性能和预警响应时间,制备了不同结构的温度传感智能纺织品。
Ma等[56]采用微流控浸涂方法制备得到同轴3层结构复合纱线,其中PI纱线作为内层,GO作为中间层以促进燃烧响应,海藻酸钠为最外层以解决GO涂层的脆性问题。复合纱线的响应时间约1 s,预警持续时间可达120 s,但是GO存在不可逆热还原,无法用于需要反复监测高温的场景。为此,He等[23]基于Fe3O4在高温和火焰下的电阻变化开发了柔性温度传感器件。将制备的海藻酸钙/Fe3O4纳米颗粒/Ag NWs气凝胶纤维编织的智能织物与消防服面料结合,实现100~400 ℃的宽范围、超灵敏的温度监测。当其直接暴露于火焰时,可在失效前2~3 s及时发出报警信号。并且在以20或40 s的循环周期反复暴露于火焰时,实现稳定且可重复的报警能力。文献[27]介绍了主要由芳纶纳米纤维、Fe3O4纳米线和聚苯胺组成的复合气凝胶,当Fe3O4纳米线添加量为25%时,复合气凝胶表现出1.3 s灵敏且可重复的火灾报警响应。
2.3.2 生物力传感
穿戴内置纺织基湿度传感器的灭火防护服可以实时对消防员进行呼吸监测,确保及时发现消防员的体力透支或呼吸困难等问题,从而避免在救援过程中出现意外。Yang等[60]首次提出了一种基于聚丙烯酰胺水凝胶的智能湿度传感织物,用于呼吸监测和非接触式感应。该织物通过在纤维上原位交联水凝胶前驱体来制备,具有良好的阻燃性和透气性。当湿度从11%增加到98%时,其电导率增加超过311倍,表现出良好的湿度传感灵敏度。此外,该湿度传感器在弯折状态下仍具有传感功能,且可多次重复使用。智能织物被用于实时监测人体呼吸和非接触式手指接近,证明了其在实际应用中的可行性。
在运动状态监测方面,Sun等[61]提出了一种用于在火场中简便监测人体运动的自供能传感织物。通过直接在芳纶织物上印刷MXene墨水电极,制备了能够感知与安全相关的简单紧急手势和复杂步态的弯曲传感器和压力传感器,并分别集成于灭火防护服的肘部和防护靴鞋底。此外,通过支持向量机算法训练从压力传感器收集的摩擦电输出数据,实现了不同步态的分类,准确率高达92.18%。Ko等[62]通过在商用机织弹性松紧带上浸渍SWCNTs、涂层银胶和预拉伸工艺制备了一种具有出色传感性能的应变传感器。双层结构设计使传感器在受到微小形变时能够产生显著的电阻变化,从而实现高灵敏度的应变检测。在1.5%~5%的应变范围内具有高达3 550的应变系数,并具有良好的循环稳定性和低迟滞性。此外,该传感器还被成功集成到消防手套中,用于监测细微的手指运动。
2.3.3 环境监测传感
对救援环境进行检测有助于帮助消防员及时感知风险。Li等[63]开发了一种可穿戴表面增强拉曼散射阵列传感器,通过丝网印刷技术将由Ag纳米颗粒、二硫化钼纳米复合材料以及黏合剂聚阴离子纤维素组成的墨水集成在阻燃手套上。使用罗丹明6G作为初始探针分子,系统评估了所制备传感器的性能。结果表明,该传感器在250 ℃下展示出高重复性和稳定性,对罗丹明6G的检测下限为1×10-13 mol/L,且传感信号在7周内保持稳定。此外,也实现了对3种多环芳烃的成功检测,有望用于救援现场环境紧急监测。
Feng等[42]利用开发的芳纶/碳纳米纤维基摩擦纳米发电机在强酸和强碱环境下的输出信号强度依赖溶液类型的特性,为化学飞溅检测和活性酸/碱液体识别提供了潜在的技术手段。结果表明,即使多次接触强酸和强碱溶液后,复合膜仍能保持相对稳定的输出电压,显示出良好的耐化学腐蚀性。该复合膜接触不同溶液(30% NaOH溶液、40% HNO3溶液、80% H2SO4溶液和水)后产生的电压呈现梯度降低的规律,分别为0.81、0.52、0.42和0.24 V。此外,构建了一个无线传输和监测系统,收集的摩擦电信号可以无线传输到远程计算机,实现了对高风险环境中的远程监测和风险感知。
2.3.4 多功能传感耦合
针对不同救援场景使用的消防员个人防护装备进行多传感耦合智能纺织品的开发对于提高综合保障能力显得尤为重要。Xu等[64]开发了一种可集成于灭火防护服中的柔性层叠夹心结构织物传感器,通过电阻和电容传感原理,能够同时监测温度变化和压力变形。该传感器由PI织物、阵列化的石墨烯涂层气凝胶以及聚酰胺织物组成,通过在2层织物中交织皮芯复合纱线形成交叉排列结构,实现了在高达120 kPa的压力检测范围内的高灵敏压力响应;同时,阵列化的石墨烯涂层气凝胶和CNTs粘胶电极纱线嵌入织物中,能够在25~400 ℃的宽温度范围内进行温度感应。Luo等[25]将基于石墨烯/PBO织物的传感器应用于消防员的运动监测和环境NO2气体检测,显示出良好的重复性和稳定性。此外,由石墨烯/PBO非织造布作为电极层和PVDF静电直写膜作为压电层组装的压电口罩,具有高效低阻过滤特性,并能够灵敏感应人体呼吸的速度和强度,可以间接反映消防员的健康状态。
此外,具有超疏水性、自愈合等多功能传感器对于实际应用也很重要。Yan等[65]通过涂层方法将疏水性聚氨酯、封装硅烷的聚磷腈微球和A-CNTs复合于棉织物中,实现了智能火灾报警响应和监测人体运动的功能。此外,所得织物传感器表现出自愈合特性。物理损伤后,在近红外光照射下愈合剂硅烷可以自发地向织物表面迁移,有效恢复织物的超疏水性能。Jiang等[66]通过同轴湿法纺丝工艺开发了一种气凝胶纤维基温度传感器,芯层和皮层分别是MXene和自愈合丝素/氧化海藻酸钠复合材料。热电纤维在200~400 ℃温度范围内展现出精确的温度感应能力,能够及时向消防员发出撤离警报,并展现出可逆的高温报警能力。此外,由于氧化海藻酸钠与丝素之间可逆的动态共价键,材料断裂后在室温下能够恢复其原始应变的89.12%,提高使用安全性。
3 结束语
智能纺织品作为可穿戴设备中一类轻质柔性系统,与个人防护装备高效集成有望为消防员提供更高级别的安全防护。本文对目前消防员个人防护用智能纺织品的成形方法及在多场景应用现状进行了总结概述。面向未来实际使用,仍存在以下挑战:
1)多种热管理智能纺织品可以实现对温度的有效调控,但温度调节能力有限,存在相变材料泄露风险、形状记忆材料响应不及时等问题。因此,开发面向多场景使用的普适性热管理新技术、进行热湿舒适性协同优化,对进一步改善消防员的穿着体验和安全防护至关重要。2)能量收集与存储器件在使用过程中易受人体活动、长期磨损和环境条件的影响,能量的高效输出仍然存在挑战。在不影响穿着舒适性的基础上,需要提高器件的能量转换和电输出效率,满足在高温、极寒等环境下的长效稳定供能。3)面向消防员救援场景实际需求,柔性传感织物在灵敏度和多传感耦合方面仍有改进空间。后续研究应关注对消防员心率、血压等生理体征的监测,开发集生理信号、运动状态、环境参数、人员定位等多传感功能于一体的智能织物,进一步提高安全保障。此外,结合人工智能技术以增强传感灵敏度、准确性和抗干扰性能等。
上述挑战的突破有赖于新材料开发和结构创新设计。在此基础上,还应结合人体工效学积极探索智能纺织品与个人防护装备的有效集成,提高消防员的安全防护和工作效率,同时不会影响穿着的舒适性和活动自由度。考虑到个人防护装备的长时间、多频次使用需要,还需关注洗涤、老化等条件对于性能的影响。最后,建立智能纺织品性能评价的标准方法,有助于对比不同智能纺织品和功能器件的性能,进而提高在消防员个人防护装备中应用的可靠性和效率。
参考文献
Assessment of Firefighters' needs for personal protective equip-ment
[J].
Study on the influence of constructional parameters on performance of outer layer of thermal protective clothing
[J].
防护手套实用性能展望
[J].
Practical performance outlook for protective gloves
[J].
Advances and applications of chemical protective clothing system
[J].
DOI:10.1177/1528083718779426
[本文引用: 1]
Protection is obligatory for the safety of people in certain occupations where they might be exposed to hazardous chemicals. This review provides an overview of chemical protective clothing, along with its necessity during industrial and military operations as well as in response to acts of terror. Moreover, chemical protective or barrier suits are illustrated and explained including their types, selection processes based on chemical hazards, working environments, and various materials available for the fabrication of effective barrier clothing. Additionally, this review elucidates current research gaps, while underscoring the challenges facing recently developed chemical protective clothing, by compiling relevant research onto a single platform. Besides, this review includes and delineates future trends in chemical protective outfits based on electro-spun nano-fibre technology involved in both detection and decomposition of poisonous chemical agents that come in contact with clothing material, and the integration of selectively permeable membrane technology to discriminately block hazardous chemicals.
干式水域救援服用复合织物的性能研究
[J].
Research on properties of composite fabric for dry water rescue suit
[J].
This paper starts from the actual functional requirements for water rescue clothing of our country's fire rescue front-line team. Composite fabrics with waterproof and moisture permeability were prepared through laminating processing. The typical outer layer fabrics and membrane materials of commercial dry water rescue suit were selected. The practical performance of several fabrics was compared through performance tests such as hydrostatic resistance, moisture permeability, and mechanical properties, and a waterproof and moisture permeable composite fabric for dry water rescue suit with excellent comprehensive performance was developed. The overall waterproof and anti-soaking performance of the trial-made dry water rescue suit with self-produced fabrics was verified. The results show that the comprehensive performance of the high-strength fiber fabric/PTFE membrane composite fabrics in this study is the best, which has the hydrostatic pressure resistance value of more than 100 kPa, the moisture permeability of about 7 000 g/(m2·d) and warp and weft tear strengths of 241 N and 171 N respectively. With excellent waterproofness, moisture permeability, comfort and durability, it is more suitable for the actual needs of water rescue in our country and has a good application prospect.
Function design of firefighting personal protective equipment: a systematic review
[J].
Smart personal protective equipment (PPE): current PPE needs, opportunities for nanotechnology and e-textiles
[J].
Wearable electronics and smart textiles: a critical review
[J].
DOI:10.3390/s140711957
PMID:25004153
[本文引用: 1]
Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.
智能织物材料的制备及其应用性能
[J].
Preparation and application performance of intelligent fabric materials
[J].
Smart textile-integrated microelectronic systems for wearable applications
[J].
Artificial intelligence enabled biodegradable all-textile sensor for smart monitoring and recognition
[J].
Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions
[J].
Challenges and limitation of wearable sensors used in firefighters' protective clothing
[J].
纺织品的阻燃及多功能化研究进展
[J].
Research progress on flame-retardation and multi-functionalization of textiles
[J].
The rising aerogel fibers: status, challenges, and oppor-tunities
[J].
Triboelectric basalt textiles efficiently operating within an ultrawide temperature range
[J].
A strategy for human safety monitoring in high-temperature environments by 3D-printed heat-resistant TENG sensors
[J].
Mechanically robust and thermal insulating silica/aramid nanofiber composite aerogel fibers with dual networks for fire-resistant and flexible triboelectric nanogenerators
[J].
Novel passive cooling composite textile for both outdoor and indoor personal thermal management
[J].
Using phase change materials and air gaps in designing fire fighting suits: a mathematical investigation
[J].
Smart coating in protective clothing for firefighters: an overview and recent improvements
[J].
智能可穿戴纺织品用电活性纤维材料
[J].
Electroactive fibrous materials for intelligent wearable textiles
[J].
An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing
[J]
Heat-resistant core-sheath yarn sensor with high durability and thermal adaptivity for fire rescue
[J].
Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field
[J].
Monitoring the core temperature of firefighters to validate a wearable non-invasive core thermometer in different types of protective clothing: concurrent in-vivo valida-tion
[J].
High fire safety thermal protective composite aerogel with efficient thermal insulation and reversible fire warning performance for firefighting clothing
[J].
Flame-retardant and thermal-protective polyimide-hydroxyapatite aerogel fiber-based composite textile for firefighting clothing
[J].
Fabrication of thermal insulation sodium alginate/SiO2 composite aerogel with superior radiative cooling function for firefighting clothing
[J].
Hierarchical-morphology metafabric for scalable passive daytime radiative cooling
[J].
DOI:10.1126/science.abi5484
PMID:34353954
[本文引用: 1]
Incorporating passive radiative cooling structures into personal thermal management technologies could effectively defend humans against intensifying global climate change. We show that large-scale woven metafabrics can provide high emissivity (94.5%) in the atmospheric window and high reflectivity (92.4%) in the solar spectrum because of the hierarchical-morphology design of the randomly dispersed scatterers throughout the metafabric. Through scalable industrial textile manufacturing routes, our metafabrics exhibit desirable mechanical strength, waterproofness, and breathability for commercial clothing while maintaining efficient radiative cooling ability. Practical application tests demonstrated that a human body covered by our metafabric could be cooled ~4.8°C lower than one covered by commercial cotton fabric. The cost-effectiveness and high performance of our metafabrics present substantial advantages for intelligent garments, smart textiles, and passive radiative cooling applications.Copyright © 2021, American Association for the Advancement of Science.
High thermal buffer and radiative cooling sodium alginate-based Janus aerogel enables multi-scenario thermal management for firefighting clothing
[J].
Developing smart fabric systems with shape memory layer for improved thermal protection and thermal comfort
[J].
A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater
[J].
Advanced functional materials for intelligent thermoregulation in personal protective equipment
[J].
Single-wall carbon nanotube fiber non-woven fabrics with a high electrothermal heating response
[J].
Design and synthesis of triboelectric polymers for high performance triboelectric nanogenerators
[J].
Flame-retardant textile-based triboelectric nanogenerators for fire protection applications
[J].
DOI:10.1021/acsnano.0c07148
PMID:33155470
[本文引用: 2]
Textile-based triboelectric nanogenerators (T-TENGs), combining the functions of energy harvesting and self-powered sensing with advantages of breathability and flexibility, have received intensive attention, which is vital to the rapid advancements in smart textiles. However, there exists few reports of T-TENGs applied to fires under the intelligent era of high requirements for devices with versatility and multiscenario practicability. Here, in combination with flame-retardant conductive cotton fabric, polytetrafluoroethylene-coated cotton fabric, and a divider, a low-cost and environmentally friendly flame-retardant textile-based triboelectric nanogenerator (FT-TENG) is developed, which is endowed with excellent fire resistance and outstanding energy harvesting capabilities. The cotton fabrics treated with a layer-by-layer self-assembly method show great self-extinguishing performance. Besides, the maximum peak power density of the FT-TENG can reach 343.19 mW/m under the tapping frequency of 3 Hz. Furthermore, the FT-TENG still keeps 49.2% of the initial electrical output even after being burned at 17 different positions; 34.48% of the electrical output is also retained when the FT-TENG is exposed to 220 °C. Moreover, the FT-TENGs are successfully applied as energy harvesters for firefighters and self-powered sensors for forest self-rescue and fire alarm systems. This work may provide a promising potential for multifunctional smart textiles in energy harvesting, self-powered sensing, and life or property security.
Reduced graphene oxide/TiO2 hybrid synergistically enhanced polyimide nanofibers with high triboelectric output and thermal charge stability
[J].
Harvesting electrical energy from high temperature environment by aerogel nano-covered triboelectric yarns
[J].
Fire-retardant, self-extinguishing triboelectric nano-generators
[J].
Thermally robust hierarchical nanofiber triboelectric yarns for efficient energy harvesting in firefighting e-textiles
[J].
Fire/acid/alkali-resistant aramid/carbon nanofiber triboelectric nanogenerator for self-powered biomotion and risk perception in fire and chemical environments
[J].
Acid and alkali-resistant fabric-based triboelectric nanogenerator for self-powered intelligent monitoring of protective clothing in highly corrosive environments
[J].
DOI:10.1039/d3ra00212h
PMID:37063728
[本文引用: 2]
The corrosion of materials severely limits the application scenarios of triboelectric nanogenerators (TENGs), especially in laboratories, chemical plants and other fields where leakage of chemically corrosive solutions is common. Here, we demonstrate a chemical-resistant triboelectric nanogenerator (CR-TENG) based on polysulfonamide (PSA) and polytetrafluoroethylene (PTFE) non-woven fabrics. The CR-TENG can stably harvest biological motion energy and perform intelligent safety protection monitoring in a strong corrosive environment. After treatment with strong acid and alkali solution for 7 days, the fabric morphology, diameter, tensile properties and output of CR-TENG are not affected, showing high reliability. CR-TENG integrated into protective equipment can detect the working status of protective equipment in real time, monitor whether it is damaged, and provide protection for wearers working in high-risk situations. In addition, the nonwoven-based CR-TENG has better wearing comfort and is promising for self-powered sensing in harsh environments.This journal is © The Royal Society of Chemistry.
Waste cotton-derived fiber-based thermoelectric aerogel for wearable and self-powered temperature-compression strain dual-parameter sensing
[J].
Harness high-temperature thermal energy via elastic thermoelectric aerogels
[J].
Temperature-arousing self-powered fire warning e-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing
[J]
Integration of dual fire alarm self-powered system: leveraging intelligent wearable flame-retardant hydrophobic cotton fabric
[J].
Highly stable flexible supercapacitors enabled by dual-network polyampholyte hydrogel without additional electrolyte additives
[J].
Paper-like polyphenylene sulfide/aramid fiber electrode with excellent areal capacitance and flame-retardant performance
[J].
Development of flame-retardant ion-gel electrolytes for safe and flexible supercapacitors
[J].
In situ polymer gel electrolyte in boosting scalable fibre lithium battery applications
[J].
High-performance fibre battery with polymer gel elec-trolyte
[J].
Flexible, stretchable, water-/fire-proof fiber-shaped Li-CO2 batteries with high energy density
[J].
Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer
[J].
Temperature-triggered fire warning PEG@wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing
[J].
Flexible polyimide-based flame-retardant e-textile for fire damage warning in firefighting clothing
[J].
A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing
[J].
Smart firefighter protective suit-functional blocks and technologies
[C]//
Efficient flame-retardant and multifunctional conductive flax fabric for intelligent fire protection and human motion monitoring
[J].
Flame-retardant, flexible, and breathable smart humidity sensing fabrics based on hydrogels for respiratory monitoring and non-contact sensing
[J].
Facile monitoring for human motion on fireground by using MiEs-TENG sensor
[J].
Ultrasensitive strain sensor based on pre-generated crack networks using Ag nanoparticles/single-walled carbon nanotube (SWCNT) hybrid fillers and a polyester woven elastic band
[J].
A wearable screen-printed SERS array sensor on fire-retardant fibre gloves for on-site environmental emergency monitoring
[J].
Integrated firefighting textile with temperature and pressure monitoring for personal defense
[J].
DOI:10.1021/acssensors.4c00288
PMID:38695880
[本文引用: 1]
Although electronic textiles that can detect external stimuli show great promise for fire rescue, existing firefighting clothing is still scarce for simultaneously integrating reliable early fire warning and real-time motion sensing, hardly providing intelligent personal protection under complex high-temperature conditions. Herein, we introduce an "all-in-one" hierarchically sandwiched fabric (HSF) sensor with a simultaneous temperature and pressure stimulus response for developing intelligent personal protection. A cross-arranged structure design has been proposed to tackle the serious mutual interference challenge during multimode sensing using two separate sets of core-sheath composite yarns and arrayed graphene-coated aerogels. The functional design of the HSF sensor not only possesses wide-range temperature sensing from 25 to 400 °C without pressure disturbance but also enables highly sensitive pressure response with good thermal adaptability (up to 400 °C) and wide pressure detection range (up to 120 kPa). As a proof of concept, we integrate large-scalable HSF sensors onto conventional firefighting clothing for passive/active fire warning and also detecting spatial pressure and temperature distribution when a firefighter is exposed to high-temperature flames, which may provide a useful design strategy for the application of intelligent firefighting protective clothing.
A multifunctional coating toward wearable superhydrophobic fabric sensor with self-healing and flame-retardant properties with high fire alarm response
[J].
Durable and wearable self-powered temperature sensor based on self-healing thermoelectric fiber by coaxial wet spinning strategy for fire safety of firefighting clothing
[J].
/
| 〈 |
|
〉 |

京公网安备11010502044800号