纺织学报, 2025, 46(05): 30-40 doi: 10.13475/j.fzxb.20241202402

特约专栏: 智能纤维与织物器件

碳纳米管功能纤维的可控制备与性能调控研究进展

李润, 常梓洋, 张如范,

清华大学 化学工程系, 北京 100084

Review of controlled synthesis and performance regulation of functional carbon nanotube fibers

LI Run, CHANG Ziyang, ZHANG Rufan,

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

通讯作者: 张如范(1986—),男,副教授,博士。主要研究方向为碳纳米管及高性能纤维材料。E-mail:zhangrufan@tsinghua.edu.cn

收稿日期: 2024-12-20   修回日期: 2025-02-5  

基金资助: 国家自然科学基金面上项目(22075163)
国家重点研发计划项目(2020YFC2201103)
国家重点研发计划项目(2020YFA0210702)

Received: 2024-12-20   Revised: 2025-02-5  

作者简介 About authors

李润(1998—),女,博士生。主要研究方向为智能显色与变色材料的可控制备与性能。

摘要

碳纳米管纤维因其优异的物理和化学性能,在纤维传感器、纤维储能器件、柔性电子及显示器件等领域具有广泛的应用潜力。为充分利用和开发单根碳纳米管的本征优异性能,综述了碳纳米管纤维的可控制备和功能化策略。碳纳米管纤维的可控制备技术包括湿法纺丝技术、阵列抽丝技术、以及目前主流应用的浮动催化直接纺丝技术,其功能化策略包括与其它功能材料的复合及多级结构设计;介绍了碳纳米管纤维在传感、储能等领域的应用进展,碳纳米管纤维在物理传感器、化学传感器等领域均得到了研究与应用,在储能领域可作为超级电容器和电化学电池的电极;最后总结了碳纳米管功能纤维领域面临的科学和技术挑战,对其未来的发展方向进行了讨论与展望。

关键词: 碳纳米管纤维; 可控制备方法; 性能调控; 多级结构设计; 传感器件; 储能器件

Abstract

Significance Carbon nanotube fibers (CNTFs), as macroscopic materials assembled from aligned individual carbon nanotubes (CNTs), have garnered significant attention by virtue of their exceptional physical and chemical properties, such as high strength, high thermal conductivity, flexibility, and electrical conductivity. These characteristics make CNTFs highly promising for applications in fiber sensors, energy storage devices, and flexible electronics. However, challenges in the controlled fabrication and functionalization of CNTFs hinder their broader application. This review systematically explores the preparation methods and performance regulation strategies of CNTFs, summarizes recent advancements across multiple fields, and outlines future directions and challenges in this area.
Progress CNTFs retain the remarkable properties of individual CNTs on a macroscopic scale, making them suitable for a wide range of advanced applications. Various fabrication techniques, such as wet spinning, array drawing, and floating catalytic chemical vapor deposition, have been developed to assemble CNTs into fibers. However, these methods face challenges, including insufficient CNT length, poor alignment and the presence of defects and impurities, limiting the full realization of their intrinsic properties. Post-treatment techniques, such as pressing, stretching, and twisting, have been employed to enhance the alignment and mechanical properties of CNTFs, achieving tensile strengths up to 9.6 GPa and electrical conductivities of 1.06×107 S/m. Compared to conventional metal and polymer fibers, CNTFs exhibit superior performance in terms of tensile strength, Young's modulus, conductivity, thermal conductivity, surface area, and flexibility. These advantages make CNTFs highly promising for applications in flexible electronics, sensors, and wearable devices.
Conclusion and Prospect Significant progress has been made in the synthesis techniques and performance optimization of CNTFs in recent years. However, critical challenges, such as defect control, efficient large-scale production, and the development of novel functionalization strategies, remain to be addressed. Future research should focus on scalable production while maintaining high material quality and performance. Additionally, more advanced methods for performance tuning will further promote the development of CNTFs in flexible electronics, energy storage devices, and other applications. As a novel type of functional material, CNTFs hold great promise for future advancements.

Keywords: carbon nanotube fiber; controlled synthesis method; performance regulation; multi level structure design; sensor; energy storage device

PDF (5047KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李润, 常梓洋, 张如范. 碳纳米管功能纤维的可控制备与性能调控研究进展[J]. 纺织学报, 2025, 46(05): 30-40 doi:10.13475/j.fzxb.20241202402

LI Run, CHANG Ziyang, ZHANG Rufan. Review of controlled synthesis and performance regulation of functional carbon nanotube fibers[J]. Journal of Textile Research, 2025, 46(05): 30-40 doi:10.13475/j.fzxb.20241202402

碳纳米管由于其独特的原子结构,理论上具有优异的力学、电学、热学等性能。例如,碳纳米管是世界上强度最高的材料之一,其弹性模量超过1 TPa,抗拉强度超过100 GPa[1]。此外,碳纳米管的热导率和电导率分别高达3 500 W/(m·K)和2×107 S/m[2]。由于碳纳米管的优异性能,研究者们围绕着碳纳米管高性能宏观体的可控制备与性能调控开展了大量研究工作,以期满足柔性电子、能源存储、航空航天等新兴和尖端领域的实际应用需求。

碳纳米管纤维是由轴向排列的单根碳纳米管组成的一维宏观体,也是碳纳米管高性能宏观集合体的代表之一。这种独特的结构使其能够较好地保持单根碳纳米管的优异性能。目前已经开发出许多将碳纳米管组装成碳纳米管纤维的制备技术,例如基于碳纳米管溶液的湿法纺丝技术[3]、超顺排垂直阵列碳纳米管直接抽丝技术[4]、浮游催化化学气相沉积法直接纺丝技术[5]等。这些方法的开发使碳纳米管纤维有望达到与碳纳米管单体同等水平的优异性能。然而,由于纤维中碳纳米管的单体长度短、排列取向度差、杂质和结构缺陷等问题,碳纳米管纤维目前还远未能利用和充分发挥单根碳纳米管的本征优异性能。因此,研究者们提出了多种后处理策略来优化碳纳米管纤维的结构和提升碳纳米管纤维的性能,如压制、拉伸和扭曲[6-7]。通过这些方法,碳纳米管纤维的抗拉强度达到了9.6 GPa[8],电导率达到1.06×107 S/m[9]。与目前工业上常用的金属纤维和聚合物纤维相比,碳纳米管纤维在抗拉强度、弹性模量、电导率、热导率、比表面积和柔性等方面均具有优势。此外,在各类碳基纤维中,碳纳米管纤维与商业上广泛使用的碳纤维具有相当水平的力学性能,并在比表面积、电导率和柔韧性等诸多方面比碳纤维具有优势。总的来说,在当今智能化、多功能化、精细化、应用环境极端化的趋势下,碳纳米管纤维在制造先进多功能纤维状设备方面显示出巨大的应用潜力。

尽管碳纳米管纤维的理论优异性能使其成为新型功能纤维的理想构件,但作为一种纯碳材料,且其表面化学惰性和结晶性很高,在许多情况下不能直接用作功能性部件,而是需要进行功能化改进和处理后,才能满足制造先进功能纤维的需求。具体而言,分层结构设计使碳纳米管纤维能够产生较大的拉伸或扭转驱动[10],制备好的碳纳米管纤维可进一步功能化,作为传感器或执行器对各种信号刺激做出响应,如电压、热、湿度或化学信号刺激。例如,通过结合氧等离子体处理的表面改性和分层结构设计,可实现本征疏水碳纳米管纤维的湿度驱动[11]。此外,碳纳米管纤维是构建纤维电子器件的理想柔性电极[12]。碳纳米管纤维可与具有离子选择性的材料结合实现离子检测,与活性材料结合实现储能,与导电聚合物结合实现热电发电等[13]。此外,越来越多的研究将高性能的功能化碳纳米管纤维进一步集成到具有复杂结构的多功能纤维或透气纺织品中[14-15]。在工业化进展方面,目前已有公司实现了碳纳米管纤维的小规模生产,并尝试应用于轻质导线、发热织物和可穿戴织物电池等,在软机器人、医疗保健、智能纺织品和可穿戴设备等新兴前沿领域中展现出了应用潜力。但与此同时,碳纳米管功能纤维仍面临批量制备、缺陷控制、功能化策略单一、应用开发不充分等科学和技术上的挑战。本文对碳纳米管纤维的可控制备技术和功能化策略进行回顾,并对其应用研究进展进行分析与总结,期望能对碳纳米管功能纤维的可控制备、性能调控以及未来发展提供启发和借鉴。

1 碳纳米管纤维的可控制备技术

碳纳米管具有力学、电学、热学等诸多方面的优异性能,但当其被组装成宏观纤维时,受到碳纳米管单体长度、结构缺陷、排列取向度、制备过程等因素的影响,纤维性能会有明显下降,导致其远远无法发挥碳纳米管单体的本征优异性能[16]。理想的碳纳米管纤维应由具有高长径比和低缺陷密度的碳纳米管单体构成,且要求单体排列紧密且取向度一致[17]。为实现这个目标,研究者们进行了大量尝试,包括对纤维制备过程的优化和高效的后处理技术开发。目前,碳纳米管纤维的制备技术主要有湿法纺丝技术、阵列抽丝技术和浮动催化直接纺丝技术。本节将对以上3种纤维制备及对应的后处理技术进行介绍。

1.1 湿法纺丝技术

湿法纺丝是一类较早开发的碳纳米管纤维制备技术。在湿法纺丝过程中,碳纳米管首先在表面活性剂的作用下分散在溶液中,接着被注入到凝固液中组装成纤维[18]。与阵列纺丝和直接纺丝技术相比,湿法纺丝制备的碳纳米管纤维单体长度较短,但排列紧密度和取向度较好[19]。此外,湿法纺丝工艺将纤维的制备与碳纳米管单体生长解耦,因此其放大生产较易实现。受到棒状聚合物湿法纺丝过程的启发,Vigolo等[20]使用十二烷基硫酸钠辅助分散碳纳米管,并在聚乙烯醇溶液中将碳纳米管纺制成纤维,但是这个过程制备的碳纳米管纤维不可避免地受到聚合物和表面活性剂等杂质的影响。为解决这个问题,采用了具有强质子化能力的超强酸溶液分散碳纳米管,碳纳米管与水接触时极易沉淀,因此消除了表面活性剂和聚合物的影响,制备出纯度相对较高的碳纳米管纤维[19]

对于湿法纺丝制备的碳纳米管纤维,碳纳米管原料的质量至关重要。Taylor等[8]使用碳纳米管单体长径比高达6 700的原料制备出高性能碳纳米管纤维。高结晶度的碳纳米管充分溶解在氯磺酸中并形成液晶,制备出的碳纳米管纤维电导率达到10.9 MS/m,抗拉强度达到4.2 GPa。

1.2 阵列抽丝技术

如从蚕茧或棉花中抽丝一样,碳纳米管也可以从可纺的碳纳米管垂直阵列中抽出并自组装成纤维。在抽丝过程中,碳纳米管束从阵列中依次脱离,并在范德华力的作用下首尾相接形成连续的丝线。但是,阵列抽丝技术对碳纳米管垂直阵列的清洁和顺排程度要求很高,只有表面干净、碳纳米管平行度较高且管间存在较强的范德华力作用的“超顺排碳纳米管阵列”才可被纺丝,这大大限制了碳纳米管的生长窗口,对碳纳米管阵列的制备提出了较为严苛的要求。Jiang等[21]首次报道了阵列纺丝技术,并制备出了长达30 cm的碳纳米管纱线;由于范德华力作用较弱,因此该纱线力学强度较差;其进一步通过乙醇处理和热处理提升了纤维强度,并成功在100 mm的硅晶圆上制备出了超顺排碳纳米管垂直阵列。

阵列纺丝技术不涉及溶液分散和纯化过程,因此较好地保持了碳纳米管的原始形貌和性质。通过对碳纳米管垂直阵列生长条件的优化,可以制备出性能更好的碳纳米管纤维。Zhang等[22]指出,碳纳米管纤维的强度随着碳纳米管单体长度的增加和直径的减小而提高。通过使用0.65 mm高的碳纳米管垂直阵列纺出了抗拉强度达1.91 GPa的碳纳米管纤维。当碳纳米管垂直阵列高度大于1 mm时,制备出的纤维的强度可以进一步提高至3.3 GPa,这也证明了碳纳米管单体长度对纤维的力学强度起到的关键作用[23]

1.3 浮动催化直接纺丝技术

阵列抽丝技术虽然能够制备出较为清洁且强度较高的碳纳米管纤维,但受限于碳纳米管垂直阵列晶圆尺寸,因此其不适合于纤维的大规模连续生产[24]。近年来,对从浮动催化法生长的碳纳米管气凝胶直接纺丝成碳纳米管纤维的方法进行了大量研究,该方法可以保持较高质量的碳纳米管单体同时实现碳纳米管纤维的连续化制备。在浮动催化化学气相沉积过程中,大量漂浮生长的碳纳米管在反应器出口处自组装成宏观结构,结合加捻、溶液处理等后处理方法形成纤维。碳纳米管的制备条件,如催化剂、气体流速、温度、反应器类型等对纤维质量起到至关重要的作用。Zhou等[25]研究了卷绕速率和反应恒温区的协同作用,研究发现,当管式炉的恒温区超过一定长度时,碳纳米管的取向度随着恒温区长度的降低和卷绕速率的增加而提高,而碳纳米管单体长度随恒温区长度的增加和卷绕速度的降低而增加。通过优化条件,在无后处理的情况下制备出了抗拉强度为3.1 N/tex的碳纳米管纤维。Lee等[26]报道了一种深度注射浮动催化法,通过将前驱体和催化剂直接注入管式炉反应高温区,连续制备出了碳纳米管单体长径比和结晶度均较高的碳纳米管纤维。

2 碳纳米管纤维的功能化策略

面向实际应用的需求,碳纳米管纤维很难直接应用,而是需对其进行功能化处理来增强其本征性能或赋予其它功能。目前发展的功能化策略主要包括多级结构设计和与功能材料复合,如图1所示。本节主要总结了碳纳米管纤维的功能化策略,并对不同方法适合的不同应用方向做了分析。

图1

图1   碳纳米管功能纤维的可控制备及功能化处理与实际应用

Fig.1   Controlled synthesis, functionalization and application of functional carbon nanotube fibers


2.1 与功能材料复合

2.1.1 物理复合

碳纳米管纤维与功能材料的直接结合通常通过较为简单的固/液混合方法实现,为复合纤维直接带来新功能。

液相涂层复合策略包括直接喷涂或浸渍,液体涂层均匀性较高,纤维与涂层间的黏附性较强且操作较为便利,是一种广泛使用的功能化策略。Tian等[27]报道了通过热辅助涂层和浸涂法制备的碳纳米管压阻纤维传感器,并实现其在可穿戴设备上的应用。与喷涂法相比,浸渍法可以增强纤维与功能添加剂之间的附着力。Yin等[28]使用丝素蛋白和甘油通过浸渍法制备出了仿生碳纳米管纤维。碳纳米管纤维与丝素蛋白之间形成氢键,增强了管间相互作用。通过浸渍一些导电聚合物如聚(偏二氟乙烯)(PVDF)、聚己内酯(PCL)等可为碳纳米管纤维带来形状记忆、热电效应等新的性质和功能[29]

固相物理包覆也是常用的功能化策略。例如,包覆了棉纤维的碳纳米管功能纤维展现出良好的柔韧性,高电导率和增强的电热性能,可以被用作柔性电极[30]。Hou等[31]制备出了碳纳米管/蜘蛛丝混合纤维,展现出良好的电学、力学性能和生物相容性,在心脏组织工程中具有应用前景。

随着纳米科学与技术的进步,原子层沉积、磁控溅射、化学自组装等方法可以实现对材料纳米尺度的精细调控。针对碳纳米管纤维对可见光吸收率超高且表面化学惰性极强因此难以被染色这个问题,本课题组首次提出了利用结构致色实现碳纳米管彩色化的思路,通过原子层沉积技术在碳纳米管纤维表面覆盖一层厚度仅为50~300 nm的金属氧化物致密涂层,利用薄膜干涉的原理实现了碳纳米管的结构致色[32]。该复合纤维表现出良好的耐久性,且与涂层的复合提高了纤维高温下的抗氧化能力。通过精细调整氧化物的种类和厚度,还可以精确调控复合纤维的颜色。进一步地,在碳纳米管纤维表面包覆2层不同的金属氧化物(TiO2、Al2O3和ZnO),实现了碳纳米管纤维的宽色域、饱和度亮度可调节的结构致色[33],大大拓展了碳纳米管纤维在智能显示、可穿戴设备、隐身等领域的应用范围。

由于原子层沉积技术存在价格昂贵、难以放大、耗时极长等限制,不适合彩色碳纳米管纤维的大批量生产。在此背景下,本课题组进一步发展了SiO2光子晶体的自组装策略,以一种高效率且低成本的液相方式,实现了碳纳米管纤维的彩色化[34]。通过调控SiO2纳米小球的粒径,可精准调控彩色碳纳米管纤维的色彩。通过加入黏性共聚物,使彩色碳纳米管纤维呈现出很好的力学稳定性和耐水洗能力。同时,由于无定形的光子晶体结构,彩色碳纳米管纤维呈现出非虹彩的特性,能够表达出单一且准确的光学信息,便于其在智能显示、智能织物、功能涂料等方面的应用。

2.1.2 化学修饰与原子掺杂

与物理复合相比,通过化学手段可以改变碳纳米管纤维的本征固有属性,同时赋予其新的功能。Hong等[35]通过酸处理和1 800 ℃热处理制备出了含有硼掺杂和氮掺杂碳纳米管的碳纳米管功能纤维。硼和氮的掺杂使得碳纳米管带隙减小,复合纤维的电导率高达2.7 MS/m。Park等[36]通过盐酸处理、湿法纺丝结合掺杂注射技术制备了柔性热电碳纳米管纤维。盐酸处理后形成的液晶相碳纳米管及聚合物的掺杂提高了纤维的热电性能,有望用于未来可穿戴设备供电。

与功能材料的复合也可在碳纳米管纤维制备过程中原位实现。Kim等[37]通过湿法纺丝将氧化石墨烯(GO)、碳纳米管纤维和聚氨酯(PU)混合,制备出了可拉伸和收缩的仿生纤维,有望应用于软体机器人。静电纺丝是一种常用的功能纤维制备技术。碳纳米管在化学助剂的作用下可以溶解在聚合物溶液中,在电压作用下制备出碳纳米管复合纳米纤维。例如,利用脱氧核糖核酸(DNA)作为分散剂,将碳纳米管溶解在聚氧化乙烯(PEO)溶液中,通过静电纺丝制备出了碳纳米管/DNA/PEO复合纳米纤维[38]。静电纺丝技术能够通过拉伸和剪切流将碳纳米管高度取向和精确组装成复合纤维,是非常高效的制备方法,具有良好的产业化前景。

2.2 碳纳米管功能纤维的多级结构设计

由于碳纳米管纤维具有良好的柔韧性和较高的力学强度,很容易对其进行多级结构设计以适应不同应用的需求。受到羊毛结构的启发,Liu等[30]制备了具有良好的可拉伸性的螺旋碳纳米管纤维。仿羊毛状结构使纤维内部碳纳米管间存在空隙,该纤维展现出良好的热绝缘性能。通过引入多级扭转结构制备出的碳纳米管绳索比简单的碳纳米管纤维或螺旋纤维具有更大的拉伸应变。Kim等[39]将拉伸和盘绕的碳纳米管纤维用作储能装置,可为发光二极管和电容器供电。这种有多级结构的纤维拥有更多的纳米孔道,从而可容纳更多的电解质离子。Gao等[40]制备了螺旋碳纳米管/PU复合纤维。弹簧状的纤维形状和本征具有弹性的PU的协同作用使复合纤维具有良好的可拉伸性。同时,通过扭转使得碳纳米管紧密缠绕和锁定在复合纤维中,使纤维具有良好的导电性。

3 碳纳米管纤维的应用

3.1 碳纳米管纤维基传感器件

传感器是一种能够将接收到的信息转化为电信号或其它信号输出的检测装置[41-43]。相比传统的平面式传感器,基于碳纳米管纤维的传感器具有轻质、高柔性、高稳定性等优点,在柔性可穿戴设备与智能织物等领域具有良好的应用前景[44]

基于碳纳米管纤维的传感器大致分为物理传感器和化学传感器2类,本节综述了近年来碳纳米管纤维基传感器的研究进展,系统讨论了这类传感器的结构设计、传感机制、制备与功能化策略,及其在健康监测、人机交互等领域的应用,并在此基础上对其未来发展方向进行展望。

3.1.1 物理传感器

1)光探测器。光探测器能够将光转换成易于输出的其它信号,随着可穿戴设备的兴起,其有望在可穿戴健康监测、成像和光通信等领域发挥重要作用。可穿戴光探测器的关键特征之一是其本征柔韧性,以及在一定范围内的弯曲、拉伸、压缩或扭转下保持稳定性能的能力;碳纳米管纤维凭借其优良特性,成为开发可穿戴式光探测器的理想候选材料之一[45]

本课题组开发了基于光致发光效应的光探测器[46],将硅烷功能化的碳纳米点(SiCDs)、二氧化硅光子晶体(SiPCs)和碳纳米管纤维相结合,实现了碳纳米管纤维的结构致色和光致发光,所制备的SiCDs/SiPCs修饰的碳纳米管纤维(SiCDs/SiPCs-CNTFs)在365 nm紫外光照射下展现出均一稳定的光致发光效果,有望作为紫外线探测器集成到织物中[46]

2)力学传感器。力学传感器可将多种力学刺激(压力、拉伸、弯曲和扭转等)转化为可读取的电信号输出,是开发生命体征监测、医疗诊断等智能可穿戴器件的重要基础部件之一[47]。按照传感机制,传统的碳纳米管纤维基力学传感器大体分为电阻式和电容式2类,分别将力学信息转化为电阻和电容的变化[48-49]

电阻式传感器通常由单个电极构成,其灵敏度主要取决于碳纳米管纤维的电阻响应。传感器的性能优化主要依托于纤维基体结构设计和导电网络的设计,纤维表面及内部微/纳米结构、纤维取向度等都是影响电阻传感性能的重要因素[47,50-51]。近年来,为提高电阻式传感器的灵敏度和工作范围,研究者们进行了多种结构和功能设计,重点围绕弹性、导电性、回复性等纤维特性的优化展开研究[47]

扭曲和屈曲是常用的纤维微结构设计方法,例如,通过预加捻可以引入螺旋结构,大大增强纤维的应变能力。此外,为改善纯碳纳米管纤维传感器的可拉伸性,常将弹性聚合物掺入碳纳米管纤维制备混合纤维,基于此制备具有高拉伸性的力学传感器[44,52]。Gao等[40]采用静电纺丝和加捻工艺制备了一种具有分层结构的螺旋碳纳米管/PU纳米纤维复合纱线,其电阻取决于拉伸过程中分级结构的变化[40]。这项研究从理论和实验上证实了微/纳米多尺度结构耦合作用对材料力学性能的增强效应,制备得到的螺旋纱线在900%拉伸范围内表现出优异的电阻恢复性和稳定性,最大拉伸伸长率为1 700%,有效解决了大应变传感下的恢复性问题[40]。同时,碳纳米管在基体中的排列、含量等参数决定了纤维拉伸过程中的有效接触面积和导电路径数量,通过对这些参数的调控可以优化导电网络,调控传感器的导电性和应变灵敏度[43]

相比电阻式传感器,电容式力学传感器通常具有较低的滞后性和更优的循环稳定性,但结构更为复杂。碳纳米管纤维基电容式传感器通常采用2层电极和中间的介电层组成的“三明治”结构,将碳纳米管片和介电层通过扭曲的方法结合,通过监测2层电极间的电容变化来检测传感器的力学变形[42,44]。一种经典的制备方法是在拉伸的橡胶纤维芯上包裹沿纤维方向取向的碳纳米管片,该方法在纤维上引入多级褶皱结构,使传感器在950%应变下的电容变化高达860%,同时表现出良好的线性响应和严重变形下的循环稳定性[53]

然而,传统机制下的力学传感器在运行过程中均需要电源的持续供能方可工作,限制了其应用的便捷性和可持续性;同时,传感信号的可读性和实时监测愈发受到重视。近年来,基于力致发光、摩擦发电机制的传感器受到高度关注[44,54]。Wu等[55]开发了一种可拉伸的自供电两栖力致发光摩擦电纳米发电机纤维(MLTENGF),具有良好的灵敏度、稳定性和探测距离高达35 cm的非接触式传感性能,为碳纳米管纤维力学传感器在智能人机交互领域的应用提供了新的思路[55]

3.1.2 化学传感器

化学传感器能够对人体及环境中的化学物质进行实时、准确监测,根据传感机制大致分为电化学传感器和非电化学(如光学)传感器[42,44]。其中,电化学传感具有灵敏度高、响应快、可靠、选择性强等优点,近年来受到了广泛研究。本部分重点介绍基于碳纳米管纤维的电化学传感器,包括其制备策略、研究进展和在可穿戴健康监测领域的应用等。

电化学传感器将化学信号转化为电信号,其传感过程大致分为2步:首先,目标化学物质在电极的活性位点被转化为电信号;随后,其产生的电荷被传输到电极,并通过后端仪器进行检测[42,56]。基于碳纳米管纤维的电化学传感器在近年来受到越来越多的关注,已被应用于检测葡萄糖[57]、抗坏血酸[58]、钙离子[59]、多巴胺[60]等多种化学物质。

随着人们对个性化健康监测的需求日益增长,可穿戴电化学传感器受到广泛关注。其中,基于织物的柔性汗液传感器代表了一种有潜力的非侵入性诊断和健康监测策略,在理想的汗液传感系统中,不同的电化学传感器可集成到多功能纤维或织物中,以实现对多种生物标志物的同时监测[61-62]。最近,Zhang等[61]设计了一体化可拉伸的多功能电化学生物传感器纤维,只需1 μL的汗液即可对pH值、K+、Na+、葡萄糖、乳酸和尿酸6种生物标记物进行高效检测,且在300%的应变下仍能表现出稳定的传感性能;由此编织而成的纺织品传感系统能够持续、实时地监测多种生理信息,展现出良好的应用潜力[61]

3.2 碳纳米管纤维基储能器件

随着可穿戴电子器件的发展,储能器件的可穿戴性受到越来越多的关注。相比传统的块状、板状器件,纤维状储能器件因其独特的一维线性结构,具有轻质、柔韧、可编织的特点,近年来受到广泛研究[63-64]。研究者们已开发出多种基于碳纳米管纤维的储能器件,本节将介绍碳纳米管纤维基超级电容器和电化学电池的研究进展,重点讨论其储能机制、结构、制备和性能优化策略等。

3.2.1 超级电容器

超级电容器兼有电池的高比能量和传统物理电容器的高比功率的优点,是具有发展潜力的新型绿色储能器件[65]。其主要由2个电极(正负极)、电解质及封装材料组成,传统的碳纳米管纤维基超级电容器利用双电层作用进行能源存储,即在电压作用下,电解液中的离子在碳纳米管纤维活性电极/电解质界面(或附近)定向排列形成双电层存储能量。由于过程中没有电化学反应,其对材料的损伤小,具有较快的充放电速率和较长的循环寿命[42,64]

碳纳米管纤维基超级电容器的结构大致可分为平行型、缠绕型和同轴型。2003年,Dalton等[66]首次使用2根扭曲的碳纳米管纤维制备出可集成到织物上的纤维状超级电容器[66]。相比之下,同轴型的超级电容器由核心纤维电极、固体/凝胶电解质层以及外层电极构成,层层堆叠的结构设计使其具有更高效的电极界面接触,因此具有更好的化学和力学稳定性。Chen等[67]利用取向碳纳米管纤维和薄膜作为内外电极,中间夹有凝胶电解质,这种独特的同轴结构有效降低了2个电极之间的接触电阻,器件最大放电电容达到59 F/g,远高于此前缠绕式超级电容器所报道的4.5 F/g,并在11 000次充放电循环后电容没有明显下降[67]

然而,由于纯碳纳米管纤维的微孔体积有限,其比容量较低,纯碳纳米管纤维基超级电容器的能量密度受到其理论比容量较低的限制,表现出较差的储能性能。为提高碳纳米管纤维电极的比电容,一种常用的策略是增大材料的有效比表面积、优化电极材料的孔道结构[65]。Ren等[68]通过化学气相法沉积碳纳米管阵列,在其孔洞内引入介孔碳(OMC)后扭转形成碳纳米管/介孔碳复合丝线,同时使用聚乙烯醇-磷酸(PVA-H3PO4)凝胶电解质构建超级电容器,结果表明,引入第二相介孔碳能够有效提高纤维超级电容器的储能比容量。另一种能够有效提高比电容的策略是在纤维表面引入异质赝电容结构。研究者们通常将纤维表面与金属氧化物或导电高分子聚合物进行复合,利用金属氧化物或导电聚合物的氧化还原反应,产生赝电容效应,从而提高纤维的储能性能[63,65]。相比于刚性金属或金属氧化物,使用具有柔性的导电赝电容聚合物进行复合更有利于实现器件的高柔性和可编织性。Huang等[69]通过控制表面电沉积条件制备了3种具有不同三维分级结构的聚吡咯(PPy)/碳纳米管纤维复合电极,其中,基于垂直排列的PPy纳米阵列/碳纳米管纤维(CNTF)的超级电容器表现出最优的柔韧性和稳定性,在0.4 A/g下表现出178.14 F/g的高比电容[69]。研究表明,通过优化复合纤维电极微/纳米尺度的三维结构设计,能够有效缩短离子扩散距离,提高超级电容器的比容和充放电效率。

3.2.2 电化学电池

在电化学电池中,物质通过发生氧化还原反应实现电荷转移和能量储存,其反应原理取决于具体的电池种类,常见的电池种类有锂离子电池、金属-空气电池、水系离子电池等[63]。纤维基电化学电池由2个纤维电极、隔膜、电解质和封装层组成,通常采用平行型、缠绕型和同轴型3种结构,其中,碳纳米管纤维是纤维电极的有力候选材料,近些年受到了广泛研究。本部分将介绍基于碳纳米管纤维的常见种类的电化学电池,包括其机制、制备、优化策略及研究进展。

1)锂离子电池。锂离子电池具有能量密度高、循环寿命长、工作温度范围宽、充电效率高、环境友好等优点,其电化学性能很大程度上取决于电极材料的成分、微结构和形貌[63,70]。相比于传统的电极材料,碳纳米管纤维具有本征缠绕和弯曲特性,且其高比表面积能够提供更多的储锂位点,从而改善锂离子的扩散和脱嵌速率;然而,由于碳纳米管本身存在结构缺陷和较高的电压迟滞,基于纯碳纳米管纤维电极的锂离子电池比容量和充放电效率均较低[70]。为解决这些问题,研究者们通过引入活性材料、异质原子掺杂等方法提升纤维电极的电化学性能[70]。硅、MoS2、Li4Ti5O12、LiMn2O4等多种活性功能成分已被用于制备碳纳米管复合纤维电极,这类复合电极无需传统的金属集流体、黏合剂或其它添加剂,使用简单结构即可实现集流体和活性材料间的良好结合。Jung等[71]采用简单的热处理和原位合成法,将碳纳米管纤维合成过程中残留的铁催化剂转化为具有电化学活性的Fe2O3纳米颗粒,并将其均匀修饰于碳纳米管表面,制备出的Fe2O3/碳纳米管纱线(CNTY)电极具有高达132 MPa/(g·cm-3)的比强度和1.59×105 S/m的高电导率[71]

具有可拉伸性的纤维状锂离子电池能够适应可穿戴器件使用过程中的拉伸变形,是近年来的研究热点之一。有研究将取向碳纳米管纤维通过加捻制成弹簧状可拉伸纤维电极,然而,这种方法通常会受到电极中低尺寸材料的限制,应变程度一般不超过100%[72-73]。引入弹性基底可以有效解决这个问题,Zhang等[74]将碳纳米管纤维电极以螺旋形状缠绕在弹性纤维基底上, 制成的纤维状锂离子电池可拉伸至600%,很好证明了碳纳米管纤维基锂离子电池在可穿戴储能领域的应用潜力[74]。然而,目前碳纳米管纤维的制备尚不成熟,其大规模可控生产和成本问题限制了其在锂离子电池中的进一步应用推广。

2)金属-空气电池。相比锂离子电池,金属-空气电池利用空气中的氧气或二氧化碳作为正极活性材料,具有轻量化和高理论能量密度的优势[42,75]。碳纳米管纤维基金属-空气电池通常采用同轴结构,其2个电极分别为空气阴极和金属阳极,目前常用的构建方式分为2种:阴极内置型和阳极内置型[75]。这种同轴结构实现了360°界面接触,有利于提升反应物的迁移效率。

常见的电池种类有锂-空气电池、锌-空气电池和铝-空气电池等。以典型的阳极内置型锂-空气电池为例,Zhang等[76]使用锂化硅/碳纳米管复合纤维作为阳极,使用凝胶电解质,并将取向碳纳米管薄片包裹在电解质层外作为空气阴极,制备所得的纤维电池有高达512 W·h/kg的能量密度,在经过20 000次循环弯曲测试后仍保持良好的工作性能[76]

3)其它电化学电池。随着可穿戴电子产品的普及,对柔性储能设备的要求不断提高,许多新型电化学电池应运而生。碳纳米管纤维已被应用于镍锌电池[77]、镍铋电池[78]、锂硫电池[79]、锌-氧化物电池[80-81]等多种新型电池的开发,近年来受到广泛研究。

Fu等[77]选择预先合成的Ni-MOF作为前驱体,在碳纳米管纤维上构建并直接生长了NiS2纳米花阵列,作为高性能纤维镍/锌电池的三维自支撑阴极,基于此组装得到的镍/锌电池的最大能量密度为224.5 mW·h/cm3,最大功率密度为34.2 W/cm3。Wang等[81]通过表面电化学沉积制备得到MnO2/CNT纤维阴极,Zn线作为阳极,构筑了一种纤维型可充电Zn-MnO2电池,表现出高比容量和良好的循环稳定性。

碳纳米管纤维基电化学电池的大规模可控生产是限制其进一步推广的重要因素,其受限于电极的均匀修饰、高效封装和连续化工艺的开发。随着大规模可控生产技术的突破,基于碳纳米管纤维的电化学电池有望实现在智能纺织品、可穿戴设备等多个领域中的实际应用。

4 结束语

本文从可控制备方法、功能化策略及应用现状等方面系统总结了碳纳米管功能纤维的可控制备与性能调控相关的研究进展。在可控制备方面,碳纳米管纤维的制备方法主要有湿法纺丝、阵列抽丝和浮动催化直接纺丝3种。其中,浮动催化直接纺丝可在保持较高质量的碳纳米管单体的同时实现碳纳米管纤维的连续化制备,已成为碳纳米管纤维制备的主流方法。碳纳米管纤维的功能化策略主要包括与功能材料复合和多级结构设计2种。碳纳米管纤维与功能材料的复合又可分为物理复合和化学复合2种,是较为普遍使用的功能化方法。随着纳米技术的发展,通过原子层沉积、化学自组装等方法可实现对纤维结构的纳米尺度的精细调控,从而满足对纤维结构和功能更精准的需求。多级结构的设计充分利用了碳纳米管纤维高柔韧性的特点,制备出的多级结构可增强功能纤维的可拉伸性、力学和电学等性能。

本文重点介绍了碳纳米管纤维在储能、传感等领域的应用进展。相比于传统的平面式器件,碳纳米管纤维基器件更加轻便灵活,在柔韧性、稳定性和灵敏度等方面展现出无可比拟的优势,在柔性可穿戴设备与智能织物等领域具有巨大的应用前景。然而,仍需认识到虽然碳纳米管的研究已经历三十几年的发展,但目前水平还远远无法实现批量可控制备,更无法满足许多新兴或高端应用领域的需求。仍有许多科学和技术难题亟待解决,在此对碳纳米管功能纤维的未来发展方向做出以下展望。

在制备方面,大批量无缺陷碳纳米管纤维的制备受到单根碳纳米管结构和纤维后处理2方面影响。因此,一方面需要通过反应器设计、制备条件创新等手段提升碳纳米管单体的长度、排列取向度、减少结构缺陷,另一方面需要开发新型高效的纤维加捻、杂质去除等后处理技术,真正实现高性能碳纳米管纤维的可控制备,发挥碳纳米管的本征优异性能。在碳纳米管纤维的功能化策略方面,与功能材料的复合和多级结构设计仍是需大力发展的研究方向,但需注意在使用这些方法时对碳纳米管本征结构带来的影响,在不损害碳纳米管单体结构和性能的情况下制备出复合功能纤维。原子层沉积等更精确可控的制备方法受到越来越多的关注。另外,在面向大规模应用时,碳纳米管功能纤维的制造成本需进一步降低。在碳纳米管功能纤维的应用方面,目前已看到碳纳米管纤维在能源存储与转换、传感、柔性电子、可穿戴设备、航空航天等领域的应用潜力,还需结合先进制备与表征技术,进一步提升碳纳米管纤维器件性能,提高其在各种环境条件下的稳定性和耐久性,还需考虑与现有产业链和制备技术的兼容性,逐步实现多功能的集成与融合。可以预见,随着纳米科技的不断进步和新材料的开发,碳纳米管纤维的应用领域将进一步扩展,其在新材料开发和技术创新中的作用将越来越重要。

总之,越来越多的学术和工业界的研究已经说明了碳纳米管功能纤维的巨大应用前景,尤其是在智能可穿戴设备、航空航天、储能等新兴和尖端领域,这对于碳纳米管功能纤维的未来发展提出了更高的目标和要求。未来需以实际需求为导向,积极吸纳交叉学科中的概念与方法,开发碳纳米管功能纤维的先进制备技术,拓展其应用领域,真正实现其在尖端领域的广泛应用。

参考文献

ZHANG Rufan, WEN Qian, QIAN Weizhong, et al.

Superstrong ultralong carbon nanotubes for mechanical energy storage

[J]. Advanced Materials, 2011, 23 (30): 3387-3391.

[本文引用: 1]

ZHANG Xiaohua, LU Weibang, ZHOU Gengheng, et al.

Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electro-nics

[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902028.

[本文引用: 1]

BEHABTU N, YOUNG C C, TSENTALOVICH D E, et al.

Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity

[J]. Science, 2013, 339 (6116): 182-186.

DOI:10.1126/science.1228061      PMID:23307737      [本文引用: 1]

Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.

ZHANG Mei, FANG Shaoli, ZAKHIDOV Anvar A, et al.

Strong, transparent, multifunctional, carbon nanotube sheets

[J]. Science, 2005, 309 (5738): 1215-1219.

PMID:16109875      [本文引用: 1]

Individual carbon nanotubes are like minute bits of string, and many trillions of these invisible strings must be assembled to make useful macroscopic articles. We demonstrated such assembly at rates above 7 meters per minute by cooperatively rotating carbon nanotubes in vertically oriented nanotube arrays (forests) and made 5-centimeter-wide, meter-long transparent sheets. These self-supporting nanotube sheets are initially formed as a highly anisotropic electronically conducting aerogel that can be densified into strong sheets that are as thin as 50 nanometers. The measured gravimetric strength of orthogonally oriented sheet arrays exceeds that of sheets of high-strength steel. These nanotube sheets have been used in laboratory demonstrations for the microwave bonding of plastics and for making transparent, highly elastomeric electrodes; planar sources of polarized broad-band radiation; conducting appliqués; and flexible organic light-emitting diodes.

KOZIOL Krzysztof, VILATELA Juan, MOISALA Anna, et al.

High-performance carbon nanotube fiber

[J]. Science, 2007, 318 (5858): 1892-1895.

PMID:18006708      [本文引用: 1]

With their impressive individual properties, carbon nanotubes should form high-performance fibers. We explored the roles of nanotube length and structure, fiber density, and nanotube orientation in achieving optimum mechanical properties. We found that carbon nanotube fiber, spun directly and continuously from gas phase as an aerogel, combines high strength and high stiffness (axial elastic modulus), with an energy to breakage (toughness) considerably greater than that of any commercial high-strength fiber. Different levels of carbon nanotube orientation, fiber density, and mechanical properties can be achieved by drawing the aerogel at various winding rates. The mechanical data obtained demonstrate the considerable potential of carbon nanotube assemblies in the quest for maximal mechanical performance. The statistical aspects of the mechanical data reveal the deleterious effect of defects and indicate strategies for future work.

ZHANG M, ATKINSON K R, BAUGHMAN R H.

Multifunctional carbon nanotube yarns by downsizing an ancient technology

[J]. Science, 2004, 306 (5700): 1358-1361.

PMID:15550667      [本文引用: 1]

By introducing twist during spinning of multiwalled carbon nanotubes from nanotube forests to make multi-ply, torque-stabilized yarns, we achieve yarn strengths greater than 460 megapascals. These yarns deform hysteretically over large strain ranges, reversibly providing up to 48% energy damping, and are nearly as tough as fibers used for bulletproof vests. Unlike ordinary fibers and yarns, these nanotube yarns are not degraded in strength by overhand knotting. They also retain their strength and flexibility after heating in air at 450 degrees C for an hour or when immersed in liquid nitrogen. High creep resistance and high electrical conductivity are observed and are retained after polymer infiltration, which substantially increases yarn strength.

OH Eugene, CHO Hyunjung, KIM Juhan, et al.

Super-strong carbon nanotube fibers achieved by engineering gas flow and postsynthesis treatment

[J]. ACS Applied Materials & Interfaces, 2020, 12 (11): 13107-13115.

[本文引用: 1]

TAYLOR L W, DEWEY O S, HEADRICK R J, et al.

Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers

[J]. Carbon, 2021, 171: 689-694.

[本文引用: 2]

XU Wei, CHEN Yun, ZHAN Hang, et al.

High-strength carbon nanotube film from improving alignment and densification

[J]. Nano Letters, 2016, 16 (2): 946-952.

DOI:10.1021/acs.nanolett.5b03863      PMID:26757031      [本文引用: 1]

A new method is reported for preparing carbon nanotube (CNT) films. This method involves the continuous production of a hollow cylindrical CNT assembly and its condensation on a winding drum. The alignment and densification of CNTs in the film are improved by controlling the winding rate and imposition of mechanical rolling, respectively. The prepared film has a strength of 9.6 GPa, which is well above those for all other man-made films and fibers.

LIMA M D, LI N, JUNG DE ANDRADE Mônica, et al.

Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles

[J]. Science, 2012, 338 (6109): 928-932.

DOI:10.1126/science.1226762      PMID:23161994      [本文引用: 1]

Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.

HE Sisi, CHEN Peining, QIU Longbin, et al.

A mechanically actuating carbon-nanotube fiber in response to water and moisture

[J]. Angewandte Chemie International Edition, 2015, 54 (49): 14880-14884.

[本文引用: 1]

XU Xiaojie, XIE Songlin, ZHANG Ye, et al.

The rise of fiber electronics

[J]. Angewandte Chemie International Edition, 2019, 58 (39): 13643-13653.

[本文引用: 1]

LI Shuqin, WANG Haixia, MAO Huiqin, et al.

Light-to-thermal conversion and thermoregulated capability of coaxial fibers with a combined influence from comb-like polymeric phase change material and carbon nanotube

[J]. ACS Applied Materials & Interfaces, 2019, 11 (15): 14150-14158.

[本文引用: 1]

WANG Longgang, ZHU Linlin, BERNARDS Matthew T, et al.

Dendrimer-based biocompatible zwitterionic micelles for efficient cellular internalization and enhanced antitumor effects

[J]. ACS Applied Polymer Materials, 2020, 2 (2): 159-171.

[本文引用: 1]

XIONG Jiaqing, CHEN Jian, LEE P S.

Functional fibers and fabrics for soft robotics, wearables, and human-robot interface

[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202002640.

[本文引用: 1]

CHO H, LEE H, OH E, et al.

Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching

[J]. Carbon, 2018, 136: 409-416.

[本文引用: 1]

TSENTALOVICH Dmitri E, HEADRICK Robert J, MIRRI Francesca, et al.

Influence of carbon nanotube characteristics on macroscopic fiber properties

[J]. ACS Applied Materials & Interfaces, 2017, 9 (41): 36189-36198.

[本文引用: 1]

DAVIS V A, PARRA-VASQUEZ A N G, GREEN M J, et al.

True solutions of single-walled carbon nanotubes for assembly into macroscopic materials

[J]. Nature Nanotechnology, 2009, 4 (12): 830-834.

DOI:10.1038/nnano.2009.302      PMID:19893518      [本文引用: 1]

Translating the unique characteristics of individual single-walled carbon nanotubes into macroscopic materials such as fibres and sheets has been hindered by ineffective assembly. Fluid-phase assembly is particularly attractive, but the ability to dissolve nanotubes in solvents has eluded researchers for over a decade. Here, we show that single-walled nanotubes form true thermodynamic solutions in superacids, and report the full phase diagram, allowing the rational design of fluid-phase assembly processes. Single-walled nanotubes dissolve spontaneously in chlorosulphonic acid at weight concentrations of up to 0.5 wt%, 1,000 times higher than previously reported in other acids. At higher concentrations, they form liquid-crystal phases that can be readily processed into fibres and sheets of controlled morphology. These results lay the foundation for bottom-up assembly of nanotubes and nanorods into functional materials.

ERICSON L M, FAN H, PENG H Q, et al.

Macroscopic, neat, single-walled carbon nanotube fibers

[J]. Science, 2004, 305 (5689): 1447-1450.

PMID:15353797      [本文引用: 2]

Well-aligned macroscopic fibers composed solely of single-walled carbon nanotubes (SWNTs) were produced by conventional spinning. Fuming sulfuric acid charges SWNTs and promotes their ordering into an aligned phase of individual mobile SWNTs surrounded by acid anions. This ordered dispersion was extruded via solution spinning into continuous lengths of macroscopic neat SWNT fibers. Such fibers possess interesting structural composition and physical properties.

VIGOLO B, PÉNICAUD A, COULON C, et al.

Macroscopic fibers and ribbons of oriented carbon nanotubes

[J]. Science, 2000, 290 (5495): 1331-1334.

PMID:11082056      [本文引用: 1]

A simple method was used to assemble single-walled carbon nanotubes into indefinitely long ribbons and fibers. The processing consists of dispersing the nanotubes in surfactant solutions, recondensing the nanotubes in the flow of a polymer solution to form a nanotube mesh, and then collating this mesh to a nanotube fiber. Flow-induced alignment may lead to a preferential orientation of the nanotubes in the mesh that has the form of a ribbon. Unlike classical carbon fibers, the nanotube fibers can be strongly bent without breaking. Their obtained elastic modulus is 10 times higher than the modulus of high-quality bucky paper.

JIANG K L, LI Q Q, FAN S S.

Nanotechnology: Spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications

[J]. Nature, 2002, 419 (6909): 801-801.

[本文引用: 1]

ZHANG Xiefei, LI Qingwen, TU Yi, et al.

Strong carbon-nanotube fibers spun from long carbon-nanotube arrays

[J]. Small, 2007, 3 (2): 244-248.

PMID:17262764      [本文引用: 1]

ZHANG X, LI Q, HOLESINGER T G, et al.

Ultrastrong, stiff, and lightweight carbon-nanotube fibers

[J]. Advanced Materials, 2007, 19 (23): 4198-4201.

[本文引用: 1]

LU Weibang, ZU Mei, BYUN Joon-Hyung, et al.

State of the art of carbon nanotube fibers: opportunities and challenges

[J]. Advanced Materials, 2012, 24 (14): 1805-1833.

[本文引用: 1]

ZHOU T, NIU Y T, LI Z, et al.

The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers

[J]. Materials & Design, 2021. DOI: 10.1016/j.matdes.2021.109557.

[本文引用: 1]

LEE S H, PARK J, PARK J H, et al.

Deep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity

[J]. Carbon, 2021, 173: 901-909.

[本文引用: 1]

TIAN Guangliang, ZHAN Lei, DENG Jixia, et al.

Coating of multi-wall carbon nanotubes (MWCNTs) on three-dimensional, bicomponent nonwovens as wearable and high-performance piezoresistive sensors

[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.130682.

[本文引用: 1]

YIN Zhe, LIANG Xiaoping, ZHOU Ke, et al.

Biomimetic mechanically enhanced carbon nanotube fibers by silk fibroin infiltration

[J]. Small, 2021. DOI: 10.1002/smll.202100066.

[本文引用: 1]

EOM J, LEE Y R, LEE J H, et al.

Highly conductive and stretchable fiber interconnections using dry-spun carbon nanotube fibers modified with ionic liquid/poly(vinylidene fluoride) copolymer composite

[J]. Composites Science and Technology, 2019, 169: 1-6.

[本文引用: 1]

LIU Peng, LI Yiming, XU Yifan, et al.

Stretchable and energy-efficient heating carbon nanotube fiber by designing a hierarchically helical structure

[J]. Small, 2018. DOI: 10.1002/smll.201702926.

[本文引用: 2]

HOU Junfeng, XIE Yu, JI Aiguo, et al.

Carbon-nanotube-wrapped spider silks for directed cardiomyocyte growth and electrophysiological detec-tion

[J]. ACS Applied Materials & Interfaces, 2018, 10 (8): 6793-6798.

[本文引用: 1]

CHEN Fengxiang, HUANG Ya, LI Run, et al.

Superdurable and fire-retardant structural coloration of carbon nanotubes

[J]. Science Advances, 2022. DOI: 10.1126/sciadv.abn5882.

[本文引用: 1]

LI Run, ZHANG Shiliang, CHEN Hang, et al.

Multicolored structural coloration of carbon nanotube fibers

[J]. SusMat, 2023, 3 (1): 102-110.

[本文引用: 1]

ZHAO Yanlong, LI Run, WANG Baoshun, et al.

Scalable structural coloration of carbon nanotube fibers via a facile silica photonic crystal self-assembly strate-gy

[J]. ACS Nano, 2023, 17 (3): 2893-2900.

[本文引用: 1]

HONG S, LEE D M, PARK M, et al.

Controlled synthesis of N-type single-walled carbon nanotubes with 100% of quaternary nitrogen

[J]. Carbon, 2020, 167: 881-887.

[本文引用: 1]

PARK Kyung Tae, LEE Taemin, KO Youngpyo, et al.

High-performance thermoelectric fabric based on a stitched carbon nanotube fiber

[J]. ACS Applied Materials & Interfaces, 2021, 13 (5): 6257-6264.

[本文引用: 1]

KIM Hyunsoo, JANG Yongwoo, LEE Dong Yeop, et al.

Bio-inspired stretchable and contractible tough fiber by the hybridization of GO/MWNT/polyurethane

[J]. ACS Applied Materials & Interfaces, 2019, 11 (34): 31162-31168.

[本文引用: 1]

KING S G, TERRILL N J, GOODWIN A J, et al.

Probing of polymer to carbon nanotube surface interactions within highly aligned electrospun nanofibers for advanced composites

[J]. Carbon, 2018, 138: 207-214.

[本文引用: 1]

KIM Shi Hyeong, HAINES Carter S, LI Na, et al.

Harvesting electrical energy from carbon nanotube yarn twist

[J]. Science, 2017, 357 (6353): 773-778.

DOI:10.1126/science.aam8771      PMID:28839068      [本文引用: 1]

Mechanical energy harvesters are needed for diverse applications, including self-powered wireless sensors, structural and human health monitoring systems, and the extraction of energy from ocean waves. We report carbon nanotube yarn harvesters that electrochemically convert tensile or torsional mechanical energy into electrical energy without requiring an external bias voltage. Stretching coiled yarns generated 250 watts per kilogram of peak electrical power when cycled up to 30 hertz, as well as up to 41.2 joules per kilogram of electrical energy per mechanical cycle, when normalized to harvester yarn weight. These energy harvesters were used in the ocean to harvest wave energy, combined with thermally driven artificial muscles to convert temperature fluctuations to electrical energy, sewn into textiles for use as self-powered respiration sensors, and used to power a light-emitting diode and to charge a storage capacitor.Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

GAO Yuan, GUO Fengyun, CAO Peng, et al.

Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor

[J]. ACS Nano, 2020, 14 (3): 3442-3450.

DOI:10.1021/acsnano.9b09533      PMID:32149493      [本文引用: 4]

Wearable and stretchable electronics including various conductors and sensors are featured with their lightweight, high flexibility, and easy integration into functional devices or textiles. However, most flexible electronic materials are still unsatisfactory due to their poor recoverability under large strain. Herein, we fabricated a carbon nanotubes (CNTs) and polyurethane (PU) nanofibers composite helical yarn with electrical conductivity, ultrastretchability, and high stretch sensitivity. The synergy of elastic PU molecules and spring-like microgeometry enable the helical yarn excellent stretchability, while CNTs are stably winding-locked into the yarn through a simple twisting strategy, making good conductivity. By virtue of the interlaced conductive network of CNTs in microlevel and the helical structure in macrolevel, the CNTs/PU helical yarn achieves good recoverability within 900% and maximum tensile elongation up to 1700%. With these features, it can be used as a superelastic and highly stable conductive wire. Moreover, it also can monitor the human motion as a rapid-response strain sensor by adjusting the content of the CNTs simply. This general and low-cost strategy is of great promise for ultrastretchable wearable electronics and multifunctional devices.

LIU J H, BAO S Y, WANG X Z.

Applications of graphene-based materials in sensors: a review

[J]. Micromachines, 2022. DOI: 10.3390/mi13020184.

[本文引用: 1]

CHEN Chuanrui, FENG Jianyou, LI Jiaxin, et al.

Functional fiber materials to smart fiber devices

[J]. Chemical Reviews, 2023, 123 (2): 613-662.

[本文引用: 5]

岳欣琰, 洪剑寒.

一维结构可穿戴柔性传感器研究进展

[J]. 现代纺织技术, 2024, 32(2): 27-39.

[本文引用: 2]

YUE Xinyan, HONG Jianhan.

Research progress on wearable flexible sensors with one-dimensional struc-ture

[J]. Advanced Textile Technology, 2024, 32(2): 27-39.

[本文引用: 2]

LIU Shilin, ZHANG Wenting, HE Jingzong, et al.

Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1-D and 2-D perspectives

[J]. Advanced Fiber Materials, 2024, 6 (1): 36-67.

[本文引用: 5]

WANG Fei, ZHAO Siming, JIANG Qinyuan, et al.

Advanced functional carbon nanotube fibers from preparation to application

[J]. Cell Reports Physical Science, 2022. DOI: 10.1016/j.xcrp.2022.100989.

[本文引用: 1]

CAI Sa, XU Xiaojie, YANG Wei, et al.

Materials and designs for wearable photodetectors

[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201808138.

[本文引用: 2]

LI Run, LI Nan, ZHAO Yanlong, et al.

Structural coloration and up/down-conversion photoluminescence of carbon nanotube fibers for ultraviolet detection

[J]. Advanced Optical Materials, 2024. DOI: 10.1002/adom.202400282.

[本文引用: 3]

陈乘风, 马雨萱, 王意淼, .

纳米纤维基力学传感器研究及应用进展

[J]. 丝绸, 2023, 60 (11): 77-88.

[本文引用: 1]

CHEN Chengfeng, MA Yuxuan, WANG Yimiao, et al.

Research and application progress of nanofiber-based mechanical sensors

[J]. Journal of silk, 2023, 60 (11): 77-88.

[本文引用: 1]

SEYEDIN Shayan, ZHANG Peng, NAEBE Maryam, et al.

Textile strain sensors: a review of the fabrication technologies, performance evaluation and applica-tions

[J]. Materials Horizons, 2019, 6 (2): 219-249.

[本文引用: 1]

SOURI Hamid, BANERJEE Hritwick, JUSUFI Ardian, et al.

Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications

[J]. Advanced Intelligent Systems, 2020. DOI: 10.1002/aisy.202000039.

[本文引用: 1]

闫涛, 潘志娟.

轻薄型取向碳纳米纤维膜的应变传感性能

[J]. 纺织学报, 2021, 42(7):62-68,75.

[本文引用: 1]

YAN TAO, PAN Zhijuan.

Strain sensing performance for thin and aligned carbon nanofiber membrane

[J]. Journal of Textile Research, 2021, 42 (7): 62-68,75.

[本文引用: 1]

RYU Seongwoo, LEE Phillip, CHOU Jeffrey B., et al.

Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion

[J]. ACS Nano, 2015, 9 (6): 5929-5936.

DOI:10.1021/acsnano.5b00599      PMID:26038807      [本文引用: 1]

The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain.

LIU Z F, FANG S, MOURA F A, et al.

Hierarchically buckled sheath-core fibers for superelastic electro-nics, sensors, and muscles

[J]. Science, 2015, 349 (6246): 400-404.

[本文引用: 1]

钱鑫, 苏萌, 李风煜, .

柔性可穿戴电子传感器研究进展

[J]. 化学学报, 2016, 74 (7): 565-575.

DOI:10.6023/A16030156      [本文引用: 1]

随着智能终端的普及,可穿戴电子设备呈现出巨大的市场前景.传感器作为核心部件之一,将影响可穿戴设备的功能设计与未来发展.柔性可穿戴电子传感器具有轻薄便携、电学性能优异和集成度高等特点,使其成为最受关注的电学传感器之一.综述了近年来柔性可穿戴电子传感器的研究进展,包括压阻、电容、压电、力致发光和摩擦电等信号转换机理,金属、无机半导体、有机和碳材料等柔性可穿戴电子的常用材料,柔性电子传感器的印刷制造及其在体温和脉搏检测、表情识别和运动监测等方面的最新应用,最后提出了柔性可穿戴电子传感器面临的挑战与未来发展方向.

QIAN Xin, SU Meng, LI Fengyu, et al.

Research progress in flexible wearable electronic sensors

[J]. Acta Chimica Sinica, 2016, 74 (7): 565-575.

DOI:10.6023/A16030156      [本文引用: 1]

With the development of intelligent terminals, wearable electronic devices show a great market prospect. As one core component of the wearable electronic device, the sensor will exert a significant influence on the design and function of the wearable electronic device in the future. Compared with the traditional electrical sensors, flexible wearable sensors have the advantages of being light, thin, portable, highly integrated and electrically excellent. It has become one of the most popular electronic sensors. This review focused on recent research advances of flexible wearable sensors, including signal transduction mechanisms, general materials, manufacture processes and recent applications. Piezoresistivity, capacitance and piezoelectricity are three traditional signal transduction mechanism. For accessing the dynamic pressure in real time and developing stretchable energy harvesting devices, sensors based on the mechanoluminescent mechanism and triboelectric mechanism are promising. Common materials used in flexible wearable electronic sensors, such as flexible substrates, metals, inorganic semiconductors, organics and carbons, are also introduced. In addition to the continuously mapping function, wearable sensors also have the practical and potential applications, which focused on the temperature and pulse detection, the facial expression recognition and the motion monitoring. Finally, the challenges and future development of flexible wearable sensors are presented.

WU Jiajun, ZHOU Xuhui, LUO Jie, et al.

Stretchable and self-powered mechanoluminescent triboelectric nanogenerator fibers toward wearable amphibious electro-optical sensor textiles

[J]. Advanced Science, 2024. DOI: 10.1002/advs.202401109.

[本文引用: 2]

CHATARD Charles, MEILLER Anne, MARINESCO StÉphane.

Microelectrode biosensors for in vivo analysis of brain interstitial fluid

[J]. Electroanalysis, 2018, 30 (6): 977-998.

[本文引用: 1]

MUQADDAS Sheza, JAVED Mohsin, NADEEM Sohail, et al.

Carbon nanotube fiber-based flexible microelectrode for electrochemical glucose sensors

[J]. ACS Omega, 2023, 8 (2): 2272-2280.

DOI:10.1021/acsomega.2c06594      PMID:36687067      [本文引用: 1]

Electrochemical sensors are gaining significant demand for real-time monitoring of health-related parameters such as temperature, heart rate, and blood glucose level. A fiber-like microelectrode composed of copper oxide-modified carbon nanotubes (CuO@CNTFs) has been developed as a flexible and wearable glucose sensor with remarkable catalytic activity. The unidimensional structure of CNT fibers displayed efficient conductivity with enhanced mechanical strength, which makes these fibers far superior as compared to other fibrous-like materials. Copper oxide (CuO) nanoparticles were deposited over the surface of CNT fibers by a binder-free facile electrodeposition approach followed by thermal treatment that enhanced the performance of non-enzymatic glucose sensors. Scanning electron microscopy and energy-dispersive X-ray analysis confirmed the successful deposition of CuO nanoparticles over the fiber surface. Amperometric and voltammetric studies of fiber-based microelectrodes (CuO@CNTFs) toward glucose sensing showed an excellent sensitivity of ∼3000 μA/mM cm, a low detection limit of 1.4 μM, and a wide linear range of up to 13 mM. The superior performance of the microelectrode is attributed to the synergistic effect of the electrocatalytic activity of CuO nanoparticles and the excellent conductivity of CNT fibers. A lower charge transfer resistance value obtained via electrochemical impedance spectroscopy (EIS) also demonstrated the superior electrode performance. This work demonstrates a facile approach for developing CNT fiber-based microelectrodes as a promising solution for flexible and disposable non-enzymatic glucose sensors.© 2023 The Authors. Published by American Chemical Society.

ZHANG Limin, LIU Fangling, SUN Xuemei, et al.

Engineering carbon nanotube fiber for real-time quantification of ascorbic acid levels in a live rat model of alzheimer's disease

[J]. Analytical Chemistry, 2017, 89 (3): 1831-1837.

DOI:10.1021/acs.analchem.6b04168      PMID:28208253      [本文引用: 1]

Ascorbic acid (AA) levels are closely correlated with physiological and pathological events in brain diseases, but the mechanism remains unclear, mainly due to the difficulty of accurately analyzing AA levels in live brain. In this study, by engineering tunable defects and oxygen-containing species in carbon nanotubes, a novel aligned carbon nanotube fiber was developed as an accurate microsensor for the ratiometric detection of AA levels in live rat brains with Alzheimer's disease (AD). AA oxidation is greatly facilitated on the fiber surface at a low potential, leading to high sensitivity as well as high selectivity against potential sources of interference in the brain. Additionally, an unexpected, separate peak from the fiber surface remains constant as the AA concentration increases, enabling real-time and ratiometric detection with high accuracy. The results demonstrated that the AA levels were estimated to be 259 ± 6 μM in cortex, 264 ± 20 μM in striatum, and 261 ± 21 μM in hippocampus, respectively, in normal condition. However, the overall AA level was decreased to 210 ± 30 μM in cortex, 182 ± 5 μM in striatum, and 136 ± 20 μM in hippocampus in the rat brain model of AD. To the best of our knowledge, this work is the first to accurately detect AA concentrations in the brains of live animal model of AD.

WANG Liyuan, XIE Songlin, WANG Zhiyuan, et al.

Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers

[J]. Nature Biomedical Engineering, 2020, 4 (2): 159-171.

DOI:10.1038/s41551-019-0462-8      PMID:31659307      [本文引用: 1]

Mechanical mismatches between implanted electronics and biological tissues can lead to inaccurate readings and long-term tissue damage. Here, we show that functionalized multi-walled carbon nanotubes twisted into helical fibre bundles that mimic the hierarchical structure of muscle can monitor multiple disease biomarkers in vivo. The flexible fibre bundles are injectable, have a low bending stiffness and display ultralow stress under compression. As proof-of-concept evidence of the sensing capabilities of these fibre bundles, we show that the fibre bundles enable the spatially resolved and real-time monitoring of HO when implanted in tumours in mice, and that they can be integrated with a wireless transmission system on an adhesive skin patch to monitor calcium ions and glucose in the venous blood of cats for 28 d. The versatility of the helical fibre bundles as chemically functionalized electrochemical sensors makes them suitable for multiple sensing applications in biomedicine and healthcare.

YANG Cheng, TRIKANTZOPOULOS Elefterios, JACOBS Christopher B, et al.

Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: correlation of electrochemical performance and surface properties

[J]. Analytica Chimica Acta, 2017, 965: 1-8.

DOI:S0003-2670(17)30130-7      PMID:28366206      [本文引用: 1]

Fibers made of CNTs are attractive microelectrode sensors because they can be directly fabricated into microelectrodes. Different protocols for making CNT fibers have been developed, but differences in surface structure and therefore electrochemical properties that result have not been studied. In this study, we correlated the surface and electrochemical properties for neurochemical detection at 3 types of materials: CNT fibers produced by wet spinning with (1) polyethylenimine (PEI/CNT) or (2) chlorosulfonic acid (CA/CNT), and (3) CNT yarns made by solid-based CNT drawing. CNT yarns had well-aligned, high purity CNTs, abundant oxygen functional groups, and moderate surface roughness which led to the highest dopamine current density (290 ± 65 pA/cm) and fastest electron transfer kinetics. The crevices of the CNT yarn and PEI/CNT fiber microelectrodes allow dopamine to be momentarily trapped during fast-scan cyclic voltammetry detection, leading to thin-layer cell conditions and a response that was independent of applied waveform frequency. The larger crevices on the PEI/CNT fibers led to a slower time response, showing too much roughness is detrimental to fast detection. CA/CNT fibers have a smoother surface and lower currents, but their negative surface charge results in high selectivity for dopamine over uric acid or ascorbic acid. Overall, small crevices, high conductivity, and abundant oxygen groups led to high sensitivity for amine neurotransmitters, such as dopamine and serotonin. Thus, different surfaces of CNT fibers result in altered electrochemical properties and could be used in the future to predict and control electrochemical performance.Copyright © 2017 Elsevier B.V. All rights reserved.

ZHANG Anning, ZHOU Liangliang, LIANG Qimin, et al.

All-in-one multifunctional and stretchable electrochemical fiber enables health-monitoring textile with trace sweat

[J]. Science China Materials, 2024, 67 (1): 251-260.

[本文引用: 3]

贺军, 郭书文, 李琳, .

面向智能可穿戴纺织品的聚合物基柔性传感器的研究进展

[J]. 棉纺织技术, 2024, 52 (11): 27-33.

[本文引用: 1]

HE Jun, GUO Shuwen, LI Lin, et al.

Research progress of polymer-based flexible sensor for smart wearable textiles

[J]. Cotton Textile Technology, 2024, 52 (11): 27-33.

[本文引用: 1]

贺文娅, 程虎虎, 曲良体.

烯碳纤维基能源器件的研究进展

[J]. 物理化学学报, 2022, 38 (9): 23-43.

[本文引用: 4]

HE Wenya, CHENG Huhu, QU Liangti.

Progress on carbonene fibers for energy devices

[J]. Acta Phvsico-Chimica Sinica, 2022, 38 (9): 23-43.

[本文引用: 4]

聂文琪, 孙江东, 许帅, .

纺织基超级电容器研究进展

[J]. 复合材料学报, 2022, 39 (3): 981-992.

[本文引用: 2]

NIE Wenqi, SUN Jiangdong, XU Shuai, et al.

Textile-based for supercapacitors: a review

[J]. Acta Materiae Compositae Sinica, 2022, 39 (3): 981-992.

[本文引用: 2]

宋维力, 范丽珍.

超级电容器研究进展:从电极材料到储能器件

[J]. 储能科学与技术, 2016, 5 (6): 788-799.

DOI:10.12028/j.issn.2095-4239.2016.0041      [本文引用: 3]

随着绿色储能器件的快速发展,超级电容器作为兼具高比能量与高比功率的优点,在储能领域具有重要发展潜力的新型储能器件,本综述从超级电容器的电极材料出发,详细概括了超级电容器电极材料的发展,包括双电层电容材料、赝电容材料以及双电层/赝电容复合材料;在此基础上,基于固态电解质,深入讨论了近年来全固态超级电容器的典型构型,针对性地总结了提高储能器件储能容量的关键问题。最后,基于电极材料与电解液的研究焦点,对超级电容器的研究提出了未来发展方向。

SONG Weili, FAN Lizhen.

Advances in supercapacitors: from electrodes materials to energy storage devices

[J]. Energy Storage Science and Technology, 2016, 5 (6): 788-799.

DOI:10.12028/j.issn.2095-4239.2016.0041      [本文引用: 3]

 With the sustainable development of green energy storage devices, supercapacitors that hold both high energy density and power density have shown significant potential in the energy storage filed. In this work, we reviewed the advancement achieved in the supercapacitor electrodes, including electrical double-layer, pseudo-capacitive and their hybrid electrodes. On the basis of the electrodes, the typical prototypes of all-solid-state supercapacitors have been intensively discussed with the employment of solid-state electrolytes, and key parameters for promoting the energy density of the devices have been summarized. According to the critical issues in the electrodes and electrolytes, the perspective toward supercapacitor research and development has been proposed.

DALTON A B, COLLINS S, MUÑOZ E, et al.

Super-tough carbon-nanotube fibres

[J]. Nature, 2003. DOI: 10.1038/423703a.

[本文引用: 2]

CHEN Xuli, QIU Longbin, REN Jing, et al.

Novel electric double-layer capacitor with a coaxial fiber structure

[J]. Advanced Materials, 2013, 25 (44): 6436-6441.

[本文引用: 2]

REN Jing, BAI Wenyu, GUAN Guozhen, et al.

Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber

[J]. Advanced Materials, 2013, 25 (41): 5965-5970.

[本文引用: 1]

HUANG Sanqing, BI Dejin, XIA Yanfei, et al.

Facile construction of three-dimensional architectures of a nanostructured polypyrrole on carbon nanotube fibers and their effect on supercapacitor performance

[J]. ACS Applied Energy Materials, 2023, 6 (2): 856-864.

[本文引用: 2]

张佰伦, 王凯, 李嘉辉, .

锂离子电池用纳米碳材料研究进展

[J]. 材料导报, 2022, 36 (20): 115-127.

[本文引用: 3]

ZHANG Bailun, WANG Kai, LI Jiahui, et al.

Progress in carbon nanomaterials for lithium-ion batteries

[J]. Materials Reports, 2022, 36 (20): 115-127.

[本文引用: 3]

JUNG Yeonsu, JEONG Yo Chan, KIM Jae Ho, et al.

One step preparation and excellent performance of CNT yarn based flexible micro lithium ion batteries

[J]. Energy Storage Materials, 2016, 5: 1-7.

[本文引用: 2]

任婧, 孙雪梅, 陈培宁, .

纤维电化学储能器件的研究进展

[J]. 科学通报, 2020, 65 (Z2): 3150-3159.

[本文引用: 1]

REN Jing, SUN Xuemei, CHEN Peining, et al.

Research progress of fiber-shaped electrochemical energy storage devices

[J]. Chinese Science Bulletin, 2020, 65 (Z2): 3150-3159.

[本文引用: 1]

ZHANG Ye, BAI Wenyu, CHENG Xunliang, et al.

Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs

[J]. Angewandte Chemie International Edition, 2014, 53 (52): 14564-14568.

[本文引用: 1]

ZHANG Ye, BAI Wenyu, REN Jing, et al.

Super-stretchy lithium-ion battery based on carbon nanotube fiber

[J]. Journal of Materials Chemistry A, 2014, 2 (29): 11054-11059.

[本文引用: 2]

YE Lei, HONG Yang, LIAO Meng, et al.

Recent advances in flexible fiber-shaped metal-air batteries

[J]. Energy Storage Materials, 2020, 28: 364-374.

DOI:10.1016/j.ensm.2020.03.015      [本文引用: 2]

Metal-air batteries in fiber shape, which are theoretically endowed with high energy densities, have emerged as a versatile platform for the advance of next-generation flexible electronics. The past decade has witnessed the booming development of fiber-shaped metal-air batteries including flexible lithium-air (oxygen) batteries, zinc-air batteries, aluminum-air batteries and lithium-CO2 batteries. Here the recent advances of fiber-shaped metal-air batteries are briefly summarized, with particular emphasis on the fabrication of flexible electrodes, the electrolyte exploitation and encapsulating material optimization. The remaining challenges and promising directions are highlighted to provide clues for the practical implementation of fiber-shaped metal-air batteries.

ZHANG Ye, JIAO Yiding, LU Lijun, et al.

An ultraflexible silicon-oxygen battery fiber with high energy density

[J]. Angewandte Chemie International Edition, 2017, 56 (44): 13741-13746.

[本文引用: 2]

SUN Chang, HAN Zhiyuan, WANG Xia, et al.

Advanced carbons nanofibers-based electrodes for flexible energy storage devices

[J]. Advanced Functional Materials, 2023. DOI: 10.1002/adfm.202305606.

[本文引用: 2]

FU Jinwen, XU Jun, ZHANG Wenyuan, et al.

Metal-organic framework-derived NiS2 nanoflowers supported on carbon nanotube fibers for aqueous rechargeable nickel-zinc batteries

[J]. ACS Applied Nano Materials, 2024, 7 (2): 2214-2223.

[本文引用: 1]

WANG Mengying, XIE Songlin, TANG Chengqiang, et al.

Making fiber-shaped Ni//Bi battery simultaneously with high energy density, power density, and safety

[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201905971.

[本文引用: 1]

CHONG Woon Gie, HUANG Jianqiu, XU Zhenglong, et al.

Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers

[J]. Advanced Functional Materials, 2017. DOI: 10.1002/adfm.201604815.

[本文引用: 1]

LI Chaowei, ZHANG Qichong, E Songfeng, et al.

An ultra-high endurance and high-performance quasi-solid-state fiber-shaped Zn-Ag2O battery to harvest wind energy

[J]. Journal of Materials Chemistry A, 2019, 7 (5): 2034-2040.

DOI:10.1039/c8ta10807b      [本文引用: 2]

With the development of wearable electronics, sustainable energy-charged fiber-shaped aqueous rechargeable batteries have become attractive power sources. Environmentally benign zinc-silver oxide (Zn-Ag2O) batteries with high energy density and ultra-stable output voltage have been demonstrated to be promising energy-storage devices. However, the major bottleneck for extensive application of Zn-Ag2O batteries is poor cyclic performance and low energy density due to structural pulverization, migration of Ag ions, and low loading of active substances. Herein, a quasi-solid-state fiber-shaped Zn-Ag2O battery was constructed employing Ag2O on a metal-organic framework (MOF)-derived N-doped carbon nanosheet array (NC) with a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layer as the cathode. A PEDOT:PSS protective layer could suppress structural pulverization and alleviate the migration of Ag ions. An MOF-derived NC skeleton enabled maintenance of structural integrity and increased the mass loading of Ag2O. This resulted in a quasi-solid-state fiber-shaped Zn-Ag2O battery delivering a high energy density of 1.57 mW h cm(-2) and remarkable cyclic durability (79.5% after 200 cycles), which are higher than those reported for any state-of-the-art Zn-Ag2O battery. More importantly, the as-fabricated Zn-Ag2O battery could be charged solely by wind energy. Thus, the present work provides a new way to harvest clean and renewable wind energy for portable and wearable electronics.

WANG Kai, ZHANG Xiaohua, HAN Jianwei, et al.

High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode

[J]. ACS Applied Materials & Interfaces, 2018, 10 (29): 24573-24582.

/