纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 30-40.doi: 10.13475/j.fzxb.20241202402
LI Run, CHANG Ziyang, ZHANG Rufan(
)
摘要:
碳纳米管纤维因其优异的物理和化学性能,在纤维传感器、纤维储能器件、柔性电子及显示器件等领域具有广泛的应用潜力。为充分利用和开发单根碳纳米管的本征优异性能,综述了碳纳米管纤维的可控制备和功能化策略。碳纳米管纤维的可控制备技术包括湿法纺丝技术、阵列抽丝技术、以及目前主流应用的浮动催化直接纺丝技术,其功能化策略包括与其它功能材料的复合及多级结构设计;介绍了碳纳米管纤维在传感、储能等领域的应用进展,碳纳米管纤维在物理传感器、化学传感器等领域均得到了研究与应用,在储能领域可作为超级电容器和电化学电池的电极;最后总结了碳纳米管功能纤维领域面临的科学和技术挑战,对其未来的发展方向进行了讨论与展望。
中图分类号:
| [1] | ZHANG Rufan, WEN Qian, QIAN Weizhong, et al. Superstrong ultralong carbon nanotubes for mechanical energy storage[J]. Advanced Materials, 2011, 23 (30): 3387-3391. |
| [2] | ZHANG Xiaohua, LU Weibang, ZHOU Gengheng, et al. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electro-nics[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902028. |
| [3] |
BEHABTU N, YOUNG C C, TSENTALOVICH D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity[J]. Science, 2013, 339 (6116): 182-186.
doi: 10.1126/science.1228061 pmid: 23307737 |
| [4] |
ZHANG Mei, FANG Shaoli, ZAKHIDOV Anvar A, et al. Strong, transparent, multifunctional, carbon nanotube sheets[J]. Science, 2005, 309 (5738): 1215-1219.
pmid: 16109875 |
| [5] |
KOZIOL Krzysztof, VILATELA Juan, MOISALA Anna, et al. High-performance carbon nanotube fiber[J]. Science, 2007, 318 (5858): 1892-1895.
pmid: 18006708 |
| [6] |
ZHANG M, ATKINSON K R, BAUGHMAN R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology[J]. Science, 2004, 306 (5700): 1358-1361.
pmid: 15550667 |
| [7] | OH Eugene, CHO Hyunjung, KIM Juhan, et al. Super-strong carbon nanotube fibers achieved by engineering gas flow and postsynthesis treatment[J]. ACS Applied Materials & Interfaces, 2020, 12 (11): 13107-13115. |
| [8] | TAYLOR L W, DEWEY O S, HEADRICK R J, et al. Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers[J]. Carbon, 2021, 171: 689-694. |
| [9] |
XU Wei, CHEN Yun, ZHAN Hang, et al. High-strength carbon nanotube film from improving alignment and densification[J]. Nano Letters, 2016, 16 (2): 946-952.
doi: 10.1021/acs.nanolett.5b03863 pmid: 26757031 |
| [10] |
LIMA M D, LI N, JUNG DE ANDRADE Mônica, et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles[J]. Science, 2012, 338 (6109): 928-932.
doi: 10.1126/science.1226762 pmid: 23161994 |
| [11] | HE Sisi, CHEN Peining, QIU Longbin, et al. A mechanically actuating carbon-nanotube fiber in response to water and moisture[J]. Angewandte Chemie International Edition, 2015, 54 (49): 14880-14884. |
| [12] | XU Xiaojie, XIE Songlin, ZHANG Ye, et al. The rise of fiber electronics[J]. Angewandte Chemie International Edition, 2019, 58 (39): 13643-13653. |
| [13] | LI Shuqin, WANG Haixia, MAO Huiqin, et al. Light-to-thermal conversion and thermoregulated capability of coaxial fibers with a combined influence from comb-like polymeric phase change material and carbon nanotube[J]. ACS Applied Materials & Interfaces, 2019, 11 (15): 14150-14158. |
| [14] | WANG Longgang, ZHU Linlin, BERNARDS Matthew T, et al. Dendrimer-based biocompatible zwitterionic micelles for efficient cellular internalization and enhanced antitumor effects[J]. ACS Applied Polymer Materials, 2020, 2 (2): 159-171. |
| [15] | XIONG Jiaqing, CHEN Jian, LEE P S. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202002640. |
| [16] | CHO H, LEE H, OH E, et al. Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching[J]. Carbon, 2018, 136: 409-416. |
| [17] | TSENTALOVICH Dmitri E, HEADRICK Robert J, MIRRI Francesca, et al. Influence of carbon nanotube characteristics on macroscopic fiber properties[J]. ACS Applied Materials & Interfaces, 2017, 9 (41): 36189-36198. |
| [18] |
DAVIS V A, PARRA-VASQUEZ A N G, GREEN M J, et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials[J]. Nature Nanotechnology, 2009, 4 (12): 830-834.
doi: 10.1038/nnano.2009.302 pmid: 19893518 |
| [19] |
ERICSON L M, FAN H, PENG H Q, et al. Macroscopic, neat, single-walled carbon nanotube fibers[J]. Science, 2004, 305 (5689): 1447-1450.
pmid: 15353797 |
| [20] |
VIGOLO B, PÉNICAUD A, COULON C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science, 2000, 290 (5495): 1331-1334.
pmid: 11082056 |
| [21] | JIANG K L, LI Q Q, FAN S S. Nanotechnology: Spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications[J]. Nature, 2002, 419 (6909): 801-801. |
| [22] |
ZHANG Xiefei, LI Qingwen, TU Yi, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays[J]. Small, 2007, 3 (2): 244-248.
pmid: 17262764 |
| [23] | ZHANG X, LI Q, HOLESINGER T G, et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers[J]. Advanced Materials, 2007, 19 (23): 4198-4201. |
| [24] | LU Weibang, ZU Mei, BYUN Joon-Hyung, et al. State of the art of carbon nanotube fibers: opportunities and challenges[J]. Advanced Materials, 2012, 24 (14): 1805-1833. |
| [25] | ZHOU T, NIU Y T, LI Z, et al. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers[J]. Materials & Design, 2021. DOI: 10.1016/j.matdes.2021.109557. |
| [26] | LEE S H, PARK J, PARK J H, et al. Deep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity[J]. Carbon, 2021, 173: 901-909. |
| [27] | TIAN Guangliang, ZHAN Lei, DENG Jixia, et al. Coating of multi-wall carbon nanotubes (MWCNTs) on three-dimensional, bicomponent nonwovens as wearable and high-performance piezoresistive sensors[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.130682. |
| [28] | YIN Zhe, LIANG Xiaoping, ZHOU Ke, et al. Biomimetic mechanically enhanced carbon nanotube fibers by silk fibroin infiltration[J]. Small, 2021. DOI: 10.1002/smll.202100066. |
| [29] | EOM J, LEE Y R, LEE J H, et al. Highly conductive and stretchable fiber interconnections using dry-spun carbon nanotube fibers modified with ionic liquid/poly(vinylidene fluoride) copolymer composite[J]. Composites Science and Technology, 2019, 169: 1-6. |
| [30] | LIU Peng, LI Yiming, XU Yifan, et al. Stretchable and energy-efficient heating carbon nanotube fiber by designing a hierarchically helical structure[J]. Small, 2018. DOI: 10.1002/smll.201702926. |
| [31] | HOU Junfeng, XIE Yu, JI Aiguo, et al. Carbon-nanotube-wrapped spider silks for directed cardiomyocyte growth and electrophysiological detec-tion[J]. ACS Applied Materials & Interfaces, 2018, 10 (8): 6793-6798. |
| [32] | CHEN Fengxiang, HUANG Ya, LI Run, et al. Superdurable and fire-retardant structural coloration of carbon nanotubes[J]. Science Advances, 2022. DOI: 10.1126/sciadv.abn5882. |
| [33] | LI Run, ZHANG Shiliang, CHEN Hang, et al. Multicolored structural coloration of carbon nanotube fibers[J]. SusMat, 2023, 3 (1): 102-110. |
| [34] | ZHAO Yanlong, LI Run, WANG Baoshun, et al. Scalable structural coloration of carbon nanotube fibers via a facile silica photonic crystal self-assembly strate-gy[J]. ACS Nano, 2023, 17 (3): 2893-2900. |
| [35] | HONG S, LEE D M, PARK M, et al. Controlled synthesis of N-type single-walled carbon nanotubes with 100% of quaternary nitrogen[J]. Carbon, 2020, 167: 881-887. |
| [36] | PARK Kyung Tae, LEE Taemin, KO Youngpyo, et al. High-performance thermoelectric fabric based on a stitched carbon nanotube fiber[J]. ACS Applied Materials & Interfaces, 2021, 13 (5): 6257-6264. |
| [37] | KIM Hyunsoo, JANG Yongwoo, LEE Dong Yeop, et al. Bio-inspired stretchable and contractible tough fiber by the hybridization of GO/MWNT/polyurethane[J]. ACS Applied Materials & Interfaces, 2019, 11 (34): 31162-31168. |
| [38] | KING S G, TERRILL N J, GOODWIN A J, et al. Probing of polymer to carbon nanotube surface interactions within highly aligned electrospun nanofibers for advanced composites[J]. Carbon, 2018, 138: 207-214. |
| [39] |
KIM Shi Hyeong, HAINES Carter S, LI Na, et al. Harvesting electrical energy from carbon nanotube yarn twist[J]. Science, 2017, 357 (6353): 773-778.
doi: 10.1126/science.aam8771 pmid: 28839068 |
| [40] |
GAO Yuan, GUO Fengyun, CAO Peng, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor[J]. ACS Nano, 2020, 14 (3): 3442-3450.
doi: 10.1021/acsnano.9b09533 pmid: 32149493 |
| [41] | LIU J H, BAO S Y, WANG X Z. Applications of graphene-based materials in sensors: a review[J]. Micromachines, 2022. DOI: 10.3390/mi13020184. |
| [42] | CHEN Chuanrui, FENG Jianyou, LI Jiaxin, et al. Functional fiber materials to smart fiber devices[J]. Chemical Reviews, 2023, 123 (2): 613-662. |
| [43] | 岳欣琰, 洪剑寒. 一维结构可穿戴柔性传感器研究进展[J]. 现代纺织技术, 2024, 32(2): 27-39. |
| YUE Xinyan, HONG Jianhan. Research progress on wearable flexible sensors with one-dimensional struc-ture[J]. Advanced Textile Technology, 2024, 32(2): 27-39. | |
| [44] | LIU Shilin, ZHANG Wenting, HE Jingzong, et al. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1-D and 2-D perspectives[J]. Advanced Fiber Materials, 2024, 6 (1): 36-67. |
| [45] | WANG Fei, ZHAO Siming, JIANG Qinyuan, et al. Advanced functional carbon nanotube fibers from preparation to application[J]. Cell Reports Physical Science, 2022. DOI: 10.1016/j.xcrp.2022.100989. |
| [46] | CAI Sa, XU Xiaojie, YANG Wei, et al. Materials and designs for wearable photodetectors[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201808138. |
| [47] | LI Run, LI Nan, ZHAO Yanlong, et al. Structural coloration and up/down-conversion photoluminescence of carbon nanotube fibers for ultraviolet detection[J]. Advanced Optical Materials, 2024. DOI: 10.1002/adom.202400282. |
| [48] | 陈乘风, 马雨萱, 王意淼, 等. 纳米纤维基力学传感器研究及应用进展[J]. 丝绸, 2023, 60 (11): 77-88. |
| CHEN Chengfeng, MA Yuxuan, WANG Yimiao, et al. Research and application progress of nanofiber-based mechanical sensors[J]. Journal of silk, 2023, 60 (11): 77-88. | |
| [49] | SEYEDIN Shayan, ZHANG Peng, NAEBE Maryam, et al. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applica-tions[J]. Materials Horizons, 2019, 6 (2): 219-249. |
| [50] | SOURI Hamid, BANERJEE Hritwick, JUSUFI Ardian, et al. Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications[J]. Advanced Intelligent Systems, 2020. DOI: 10.1002/aisy.202000039. |
| [51] | 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(7):62-68,75. |
| YAN TAO, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane[J]. Journal of Textile Research, 2021, 42 (7): 62-68,75. | |
| [52] |
RYU Seongwoo, LEE Phillip, CHOU Jeffrey B., et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion[J]. ACS Nano, 2015, 9 (6): 5929-5936.
doi: 10.1021/acsnano.5b00599 pmid: 26038807 |
| [53] | LIU Z F, FANG S, MOURA F A, et al. Hierarchically buckled sheath-core fibers for superelastic electro-nics, sensors, and muscles[J]. Science, 2015, 349 (6246): 400-404. |
| [54] |
钱鑫, 苏萌, 李风煜, 等. 柔性可穿戴电子传感器研究进展[J]. 化学学报, 2016, 74 (7): 565-575.
doi: 10.6023/A16030156 |
|
QIAN Xin, SU Meng, LI Fengyu, et al. Research progress in flexible wearable electronic sensors[J]. Acta Chimica Sinica, 2016, 74 (7): 565-575.
doi: 10.6023/A16030156 |
|
| [55] | WU Jiajun, ZHOU Xuhui, LUO Jie, et al. Stretchable and self-powered mechanoluminescent triboelectric nanogenerator fibers toward wearable amphibious electro-optical sensor textiles[J]. Advanced Science, 2024. DOI: 10.1002/advs.202401109. |
| [56] | CHATARD Charles, MEILLER Anne, MARINESCO StÉphane. Microelectrode biosensors for in vivo analysis of brain interstitial fluid[J]. Electroanalysis, 2018, 30 (6): 977-998. |
| [57] |
MUQADDAS Sheza, JAVED Mohsin, NADEEM Sohail, et al. Carbon nanotube fiber-based flexible microelectrode for electrochemical glucose sensors[J]. ACS Omega, 2023, 8 (2): 2272-2280.
doi: 10.1021/acsomega.2c06594 pmid: 36687067 |
| [58] |
ZHANG Limin, LIU Fangling, SUN Xuemei, et al. Engineering carbon nanotube fiber for real-time quantification of ascorbic acid levels in a live rat model of alzheimer's disease[J]. Analytical Chemistry, 2017, 89 (3): 1831-1837.
doi: 10.1021/acs.analchem.6b04168 pmid: 28208253 |
| [59] |
WANG Liyuan, XIE Songlin, WANG Zhiyuan, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers[J]. Nature Biomedical Engineering, 2020, 4 (2): 159-171.
doi: 10.1038/s41551-019-0462-8 pmid: 31659307 |
| [60] |
YANG Cheng, TRIKANTZOPOULOS Elefterios, JACOBS Christopher B, et al. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: correlation of electrochemical performance and surface properties[J]. Analytica Chimica Acta, 2017, 965: 1-8.
doi: S0003-2670(17)30130-7 pmid: 28366206 |
| [61] | ZHANG Anning, ZHOU Liangliang, LIANG Qimin, et al. All-in-one multifunctional and stretchable electrochemical fiber enables health-monitoring textile with trace sweat[J]. Science China Materials, 2024, 67 (1): 251-260. |
| [62] | 贺军, 郭书文, 李琳, 等. 面向智能可穿戴纺织品的聚合物基柔性传感器的研究进展[J]. 棉纺织技术, 2024, 52 (11): 27-33. |
| HE Jun, GUO Shuwen, LI Lin, et al. Research progress of polymer-based flexible sensor for smart wearable textiles[J]. Cotton Textile Technology, 2024, 52 (11): 27-33. | |
| [63] | 贺文娅, 程虎虎, 曲良体. 烯碳纤维基能源器件的研究进展[J]. 物理化学学报, 2022, 38 (9): 23-43. |
| HE Wenya, CHENG Huhu, QU Liangti. Progress on carbonene fibers for energy devices[J]. Acta Phvsico-Chimica Sinica, 2022, 38 (9): 23-43. | |
| [64] | 聂文琪, 孙江东, 许帅, 等. 纺织基超级电容器研究进展[J]. 复合材料学报, 2022, 39 (3): 981-992. |
| NIE Wenqi, SUN Jiangdong, XU Shuai, et al. Textile-based for supercapacitors: a review[J]. Acta Materiae Compositae Sinica, 2022, 39 (3): 981-992. | |
| [65] |
宋维力, 范丽珍. 超级电容器研究进展:从电极材料到储能器件[J]. 储能科学与技术, 2016, 5 (6): 788-799.
doi: 10.12028/j.issn.2095-4239.2016.0041 |
|
SONG Weili, FAN Lizhen. Advances in supercapacitors: from electrodes materials to energy storage devices[J]. Energy Storage Science and Technology, 2016, 5 (6): 788-799.
doi: 10.12028/j.issn.2095-4239.2016.0041 |
|
| [66] | DALTON A B, COLLINS S, MUÑOZ E, et al. Super-tough carbon-nanotube fibres[J]. Nature, 2003. DOI: 10.1038/423703a. |
| [67] | CHEN Xuli, QIU Longbin, REN Jing, et al. Novel electric double-layer capacitor with a coaxial fiber structure[J]. Advanced Materials, 2013, 25 (44): 6436-6441. |
| [68] | REN Jing, BAI Wenyu, GUAN Guozhen, et al. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber[J]. Advanced Materials, 2013, 25 (41): 5965-5970. |
| [69] | HUANG Sanqing, BI Dejin, XIA Yanfei, et al. Facile construction of three-dimensional architectures of a nanostructured polypyrrole on carbon nanotube fibers and their effect on supercapacitor performance[J]. ACS Applied Energy Materials, 2023, 6 (2): 856-864. |
| [70] | 张佰伦, 王凯, 李嘉辉, 等. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36 (20): 115-127. |
| ZHANG Bailun, WANG Kai, LI Jiahui, et al. Progress in carbon nanomaterials for lithium-ion batteries[J]. Materials Reports, 2022, 36 (20): 115-127. | |
| [71] | JUNG Yeonsu, JEONG Yo Chan, KIM Jae Ho, et al. One step preparation and excellent performance of CNT yarn based flexible micro lithium ion batteries[J]. Energy Storage Materials, 2016, 5: 1-7. |
| [72] | 任婧, 孙雪梅, 陈培宁, 等. 纤维电化学储能器件的研究进展[J]. 科学通报, 2020, 65 (Z2): 3150-3159. |
| REN Jing, SUN Xuemei, CHEN Peining, et al. Research progress of fiber-shaped electrochemical energy storage devices[J]. Chinese Science Bulletin, 2020, 65 (Z2): 3150-3159. | |
| [73] | ZHANG Ye, BAI Wenyu, CHENG Xunliang, et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs[J]. Angewandte Chemie International Edition, 2014, 53 (52): 14564-14568. |
| [74] | ZHANG Ye, BAI Wenyu, REN Jing, et al. Super-stretchy lithium-ion battery based on carbon nanotube fiber[J]. Journal of Materials Chemistry A, 2014, 2 (29): 11054-11059. |
| [75] |
YE Lei, HONG Yang, LIAO Meng, et al. Recent advances in flexible fiber-shaped metal-air batteries[J]. Energy Storage Materials, 2020, 28: 364-374.
doi: 10.1016/j.ensm.2020.03.015 |
| [76] | ZHANG Ye, JIAO Yiding, LU Lijun, et al. An ultraflexible silicon-oxygen battery fiber with high energy density[J]. Angewandte Chemie International Edition, 2017, 56 (44): 13741-13746. |
| [77] | SUN Chang, HAN Zhiyuan, WANG Xia, et al. Advanced carbons nanofibers-based electrodes for flexible energy storage devices[J]. Advanced Functional Materials, 2023. DOI: 10.1002/adfm.202305606. |
| [78] | FU Jinwen, XU Jun, ZHANG Wenyuan, et al. Metal-organic framework-derived NiS2 nanoflowers supported on carbon nanotube fibers for aqueous rechargeable nickel-zinc batteries[J]. ACS Applied Nano Materials, 2024, 7 (2): 2214-2223. |
| [79] | WANG Mengying, XIE Songlin, TANG Chengqiang, et al. Making fiber-shaped Ni//Bi battery simultaneously with high energy density, power density, and safety[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201905971. |
| [80] | CHONG Woon Gie, HUANG Jianqiu, XU Zhenglong, et al. Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers[J]. Advanced Functional Materials, 2017. DOI: 10.1002/adfm.201604815. |
| [81] |
LI Chaowei, ZHANG Qichong, E Songfeng, et al. An ultra-high endurance and high-performance quasi-solid-state fiber-shaped Zn-Ag2O battery to harvest wind energy[J]. Journal of Materials Chemistry A, 2019, 7 (5): 2034-2040.
doi: 10.1039/c8ta10807b |
| [82] | WANG Kai, ZHANG Xiaohua, HAN Jianwei, et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode[J]. ACS Applied Materials & Interfaces, 2018, 10 (29): 24573-24582. |
| [1] | 廖昙倩, 李文雅, 杨晓宇, 赵静娜, 张骁骅. 碳纳米管/聚乙二醇复合相变纤维的制备及其热性能[J]. 纺织学报, 2025, 46(03): 9-16. |
| [2] | 高志浩, 宁新, 明津法. 生物质基碳气凝胶及其在储能器件中应用研究进展[J]. 纺织学报, 2024, 45(06): 210-218. |
| [3] | 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40. |
| [4] | 张天芸, 石小红, 张乐, 王富娟, 谢依娜, 杨亮, 冉奋. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022, 43(11): 22-28. |
| [5] | 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206. |
| [6] | 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184. |
| [7] | 李清文 赵静娜 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用[J]. 纺织学报, 2018, 39(12): 145-151. |
|
||