纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 9-16.doi: 10.13475/j.fzxb.20240304501

• 纤维材料 • 上一篇    下一篇

碳纳米管/聚乙二醇复合相变纤维的制备及其热性能

廖昙倩1,2, 李文雅1(), 杨晓宇3, 赵静娜2, 张骁骅4   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
    3.南昌工程学院 理学院, 江西 南昌 330099
    4.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2024-03-18 修回日期:2024-09-29 出版日期:2025-03-15 发布日期:2025-04-16
  • 通讯作者: 李文雅(1988—),女,讲师,博士。主要研究方向为特种纺纱方法及其设备研发、纺织材料高值回收再利用、高性能纤维纺纱工艺及产品设计。E-mail:leewya@126.com
  • 作者简介:廖昙倩(2001—),女,硕士生。主要研究方向为功能性复合材料及纺织品的研发与应用。
  • 基金资助:
    国家自然科学基金面上项目(52373031);陕西省教育厅2020重点研究计划产业用纺织品协同创新中心项目(20JY026);中国纺织工业联合会科技指导性项目(2022020);陕西省重点研发计划一般项目(2024GX-YBXM-569);东华大学博士科研基金项目(BS202105)

Preparation and thermal properties of carbon nanotube/polyethylene glycol composite phase change fiber

LIAO Tanqian1,2, LI Wenya1(), YANG Xiaoyu3, ZHAO Jingna2, ZHANG Xiaohua4   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
    3. School of Science, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China
    4. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2024-03-18 Revised:2024-09-29 Published:2025-03-15 Online:2025-04-16

摘要: 为解决有机相变材料导热性能、力学性能、热稳定性差等问题,利用一维连续的宏观碳纳米管(CNT)纤维作为增强骨架,采用电化学析氢膨胀技术原位浸润聚乙二醇(PEG)制备了CNT/PEG复合相变纤维,并对其结构和热力学性能进行分析。结果表明:CNT/PEG复合相变纤维表面光滑、结构均匀,PEG负载量达94%以上;CNT的网络结构还促进了不同分子质量PEG的协同结晶,复合相变纤维的相变温度可在9.2~24.7 ℃范围内进行调控,相变焓最高达168.2 J/g,在120次热循环后仍具有优异的稳定性;得益于CNT出色的光吸收能力,复合相变纤维的光热转换效率达63.5%;复合相变纤维呈现出优异的力学和电学性能,断裂强度最高可达412 MPa,断裂伸长率可达17.0%,电阻值稳定;使用高透明疏水性材料对复合相变纤维进行封装,解决了PEG在空气中的吸湿问题,且不影响复合相变纤维的光热特性。

关键词: 智能调温纺织品, 相变纤维, 碳纳米管纤维, 原位复合, 相变储能, 光热转换, 封装

Abstract:

Objective Multifunctional fibrous phase change materials, namely PCM fibers, are a promising candidate for energy storage and thermal management applications, especially the wearable and flexible devices. The future development of PCM fibers requires efficient and facile energy conversion, high density storage capacity, and the cap ability to respond different stimuli. However, the inherent shortcomings of the organic PCM make it still challenging to simultaneously realize both solar energy conversion and energy storage. Thus, the appropriate incorporation or composition of carbon nanotubes (CNTs) into organic PCMs has been considered an effective solution to solve the above problems.

Method A cooperative in situ impregnation is adopted to simultaneously introduce polyethylene glycol (PEG) into CNT network framework, resulting in a CNT/PEG composite PCM fiber. In this strategy, a pre-densified CNT fiber is used as the CNT framework. During an electrolysis-induced expansion, the CNT scaffold is expanded by orders of magnitude with the network structure well maintained. Therefore, organic PCM (with different molecule weight) molecules can be simultaneously impregnated into the expanded CNT scaffold. After the composition and post-spinning, a continuous composite fiber was obtained.

Results Such strategy can result in a nearly ideal composite structure, including: 1) the organic PCM can be loaded at super high mass fractions, up to 94%; 2) PCM molecules are uniformly introduced into the CNT scaffold; 3) The CNT scaffold provided the excellent pathways to conduct heat, electrons and stresses, leading to the greatly enhanced thermal performance (including the phase change as well) and superior mechanical, and electrical properties; 4) the network structure provides the perfect solution for the liquid leakage; 5) the composite PCM fiber exhibits superior cyclic stability. Besides these overall advantages, the crystallinity, phase change temperatures, the phase change enthalpies can also be precisely regulated to meet different requirements.

Conclusion This study provides a new strategy for the design and construction of composite PCMs based on CNT networks for high efficient photothermal conversion, by virtue of the presence of CNT network, the obtained PCM fiber with the characteristics of high loading (up to 94%) and uniformly compounding, exhibits superior mechanical, electrical and thermal properties, and high cap abilities of energy conversion and storage, favourable thermal cycling and shape stability. All of these characteristics provide a new types of multifunctional fiber for the development of advanced wearable thermal management textile.

Key words: intelligent temperature control textile, phase change fiber, carbon nanotube fiber, in situ composite, phase change energy storage, photothermal conversion, encapsulation

中图分类号: 

  • TS102.5

图1

CNT纤维析氢膨胀结构示意图"

图2

碳纳米管纤维的扫描电镜照片"

图3

CNT/PEG复合相变纤维的扫描电镜照片"

图4

CNT/PEG复合相变纤维的热重曲线"

图5

CNT/PEG复合相变纤维的DSC曲线"

表1

碳纳米管/聚乙二醇复合相变纤维的热性能数据"

试样
编号
熔融温度/
熔融焓值/
(J·g-1)
结晶温度/
结晶焓值/
(J·g-1)
试样 PEG 试样 PEG 试样 PEG 试样 PEG
1 24.1 25.5 134.2 136.4 9.2 10.6 136.4 139.3
2 41.8 40.6 147.6 150.1 14.4 11.7 152.3 156.7
3 46.1 45.5 155.0 159.0 17.4 16.9 157.1 166.5
4 52.3 47.7 162.0 168.1 16.1 17.9 165.1 171.2
5 53.5 51.9 167.3 173.0 24.7 20.9 168.2 188.0

图6

不同质量比的CNT、PEG、 CNT/PEG复合相变纤维的X射线衍射曲线"

图7

CNT/PEG复合相变织物在光照下的时间-温度曲线"

图8

复合相变纤维120次热循环前后的DSC曲线"

图9

CNT/PEG复合相变纤维热循环前后的扫描电镜照片"

表2

碳纳米管/聚乙二醇复合相变纤维的力学与电学及导热性能数据"

试样
编号
直径/
μm
断裂强度/
MPa
断裂
伸长率/%
电阻/Ω 电导率/
(104 S·m-1)
热导率/
(W·m-1·K-1)
1 224 412 11.5 73.9 1.72 29.0
2 258 301 11.7 66.2 1.45 28.4
3 270 239 12.0 83.0 1.05 27.0
4 236 219 12.5 79.3 1.44 24.0
5 381 211 17.0 75.8 0.58 22.0

图10

纯PEG1500与CNT/PEG织物在80 ℃下加热30 min后的泄露情况对比"

图11

CNT/PEG复合相变纤维涂敷PDMS前后的性能对比"

[1] LEE J, LIN K Y A, JUNG S, et al. Hybrid renewable energy systems involving thermochemical conversion process for waste-to-energy strategy[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2022.139218.
[2] LAWAG R A, ALI H M. Phase change materials for thermal management and energy storage: a review[J]. Journal of Energy Storage, 2022. DOI: 10.1016/j.est.2022.105602.
[3] 陈家东, 佘静, 李发兵, 等. 相变纤维制备及其应用研究进展[J]. 化工新型材料, 2023, 51(4):51-57.
doi: 10.19817/j.cnki.issn1006-3536.2023.04.009
CHEN Jiadong, SHE Jing, LI Fabing, et al. Research progress on preparation and application of phase change fiber[J]. New Chemical Materials, 2023, 51(4): 51-57.
doi: 10.19817/j.cnki.issn1006-3536.2023.04.009
[4] LUO D J, XIANG L, SUN X, et al. Phase-change smart lines based on paraffin-expanded graphite/polypropylene hollow fiber membrane composite phase change materials for heat storage[J]. Energy, 2020. DOI: 10.1016/j.energy.2020.117252.
[5] XIANG L, LUO D J, YANG J K, et al. Construction and design of paraffin/PVDF hollow fiber linear-phase change energy storage materials[J]. Energy & Fuels. 2019, 33(11):11584-11591.
[6] QUAN Z Z, XU Y Q, RONG H, et al. Preparation of oil-in-water core-sheath nanofibers through emulsion electrospinning for phase change temperature regul-ation[J]. Polymer, 2022. DOI: 10.1016/j.polymer.2022.125252.
[7] NIU Z X, QI S Y, SHUA IB S S A, et al. Flexible, stimuli-responsive and self-cleaning phase change fiber for thermal energy storage and smart textiles[J]. Composites Part B: Engineering, 2021. DOI: 10.1016/j.compositesb.2021.109431.
[8] BAO Y Q, L J, LIU Z W, et al. Bending stiffness-directed fabricating of kevlar aerogel-confined organic phase-change fibers[J]. ACS Nano, 2021, 15 (9):15180-15190.
doi: 10.1021/acsnano.1c05693 pmid: 34423639
[9] TON G X, LI N Q, ZENG M, et al. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: recent advancement and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 108:398-422.
[10] SHWNG N, ZHU C Y, RAO Z H. Solution combustion synthesized copper foams for enhancing the thermal transfer properties of phase change material[J]. Journal of Alloys and Compounds, 2021. DOI: 10.1016/j.jallcom.2021.159458.
[11] MALEKI M, AHAMADI P T, M H, et al. Photo-thermal conversion structure by infiltration of paraffin in three dimensionally interconnected porous polystyrene-carbon nanotubes (PS-CNT) polyHIPE foam[J]. Solar Energy Materials and Solar Cells, 2019, 191:266-274.
[12] CHEN X, GAO H Y, YANG M, et al. Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting[J]. Nano Energy, 2018, 49:86-94.
[13] LI M, MU B Y. Effect of different dimensional carbon materials on the properties and application of phase change materials: a review[J]. Applied Energy, 2019, 242:695-715.
[14] HE M Z, YANG L, LIN W Y, et al. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage[J]. Journal of Energy Storage, 2019. DOI: 10.1016/j.est.2019.100874.
[15] SHENG N, RAO Z H, ZHU C Y, et al. Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage[J]. Applied Thermal Engineering, 2019. DOI: /10.1016/j.applthermaleng.2019.114493.
[16] LI G, HONG G, DONG D, et al. Multiresponsive graphene-aerogel-directed phase-change smart fibers[J]. Adv Mater, 2018. DOI: 10.1002/adma.201801754.
[17] WANG F, ZHAO S M, JIANG Q Y, et al. Advanced functional carbon nanotube fibers from preparation to application[J]. Cell Reports Physical Science, 2022. DOI: 10.1016/j.xcrp.2022.100989.
[18] QIU L, GUO P, YANG X Q, et al. Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances[J]. Carbon, 2019, 145:650-657.
[19] LI Y, SUN K, KOU Y, et al. One-step synthesis of graphene-based composite phase change materials with high solar-thermal conversion efficiency[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.132439.
[20] LI G, HONG G, DONG D, et al. Multiresponsive graphene-aerogel-directed phase-change smart fibers[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201801754.
[1] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[2] 孙浪涛, 杨宇珊. 调温抗菌微胶囊的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(02): 171-178.
[3] 葛灿, 雍楠, 杜恒, 吴天宇, 方剑. 开放热管理式三维织物基光热海水淡化系统[J]. 纺织学报, 2024, 45(02): 153-161.
[4] 潘露琪, 任李培, 肖杏芳, 徐卫林, 张骞. 纤维基界面光热蒸发器表面除盐的研究进展[J]. 纺织学报, 2023, 44(11): 225-231.
[5] 娄辉清, 上媛媛, 曹先仲, 徐蓓蕾. 碳氮化钛/粘胶纤维束集合体太阳能界面水蒸发器的制备及其性能[J]. 纺织学报, 2023, 44(10): 9-15.
[6] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[7] 狄纯秋, 郭静, 管福成, 相玉龙, 单继成. 双金属离子交联海藻酸盐复合相变纤维的制备与性能[J]. 纺织学报, 2023, 44(05): 54-62.
[8] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[9] 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40.
[10] 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206.
[11] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42.
[12] 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173.
[13] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[14] 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121.
[15] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!