纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 17-26.doi: 10.13475/j.fzxb.20240304301

• 纤维材料 • 上一篇    下一篇

阻抗阶跃渐变层结构纤维素/Ti3C2Tx气凝胶材料的制备及其吸波性能

李一1, 张恒宇1, 郭雯卓1, 陈剑英1, 王妮1, 肖红2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.军事科学院 系统工程研究院, 北京 100010
  • 收稿日期:2024-03-18 修回日期:2024-07-01 出版日期:2025-03-15 发布日期:2025-04-16
  • 通讯作者: 肖红(1976—),女,高级工程师,博士。主要研究方向为电磁功能纺织材料、功能性纤维与织物、迷彩伪装及隐身纺织材料。E-mail:76echo@vip.sina.com
  • 作者简介:李一(2000—),女,硕士生。主要研究方向为电磁屏蔽与吸波材料。
  • 基金资助:
    国家自然科学基金面上项目(52173191)

Preparation of cellulose/Ti3C2Tx aerogel absorbing materials with impedance step gradient layer structure and their absorption properties

LI Yi1, ZHANG Hengyu1, GUO Wenzhuo1, CHEN Jianying1, WANG Ni1, XIAO Hong2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Systems Engineering Institute, Academy of Military Sciences, Beijing 100010, China
  • Received:2024-03-18 Revised:2024-07-01 Published:2025-03-15 Online:2025-04-16

摘要: 为拓宽吸波频段,获得高效吸波材料,以纤维素纳米纤维(CNF)为骨架、二维过渡金属碳化物(Ti3C2Tx)为导电填料,制备了三维多孔气凝胶吸波材料。通过扫描电镜及透射电镜、红外光谱仪、X射线光电子能谱及衍射仪、矢量网络分析仪表征了其结构与各项性能。结果表明:基于气凝胶的多孔结构及Ti3C2Tx的导电损耗,使得CNF/Ti3C2Tx复合气凝胶具有吸波效能,改变Ti3C2Tx含量及气凝胶厚度可调节吸波带宽和峰值。根据三维电磁仿真软件CST STUDIO SUITE仿真模拟结果,制备Ti3C2Tx质量分数依次为1%、25%、50%的CNF/Ti3C2Tx复合气凝胶,在电磁波入射方向按照特征阻抗从大到小叠层构建阻抗阶跃渐变的多层复合结构吸波材料,该材料具有更好的阻抗匹配和衰减损耗性能,反射损耗最小可达-15.9 dB,有效吸收带宽覆盖整个X波段。

关键词: 吸波材料, 二维过渡金属碳/氮化物, 纤维素气凝胶, 层结构, 阻抗阶跃渐变, 吸波性能

Abstract:

Objective In order to broaden the absorption frequency band, obtain high-efficiency absorbing materials, and solve the problems of high energy consumption and serious environmental pollution in the preparation of polymer aerogel materials. Three-dimensional porous aerogel absorbers were prepared using cellulose nanofibers (CNF) as the framework and two-dimensional transition metal carbides (Ti3C2Tx) as conductive fillers.

Method Freeze-drying was adopted to construct CNF/Ti3C2Tx composite aerogel materials with different electromagnetic properties, and further the electromagnetic combination of multilayer CNF/Ti3C2Tx composite aerogel materials with impedance step gradient structure was explored by CST STUDIO SUITE simulation, and multilayer CNF/Ti3C2Tx composite aerogel materials with broadband absorption effect prepared.

Results The results showed that based on the porous structure of aerogel and the conductive loss of Ti3C2Tx, CNF/Ti3C2Tx composite aerogel material possessed electromagnetic wave absorption properties, and the absorption bandwidth and peak value can be adjusted by changing the content and thickness of Ti3C2Tx. The CNF/Ti3C2Tx composite aerogel materials with Ti3C2Tx mass fractions of 1%, 25% and 50% were prepared, and the impedance step gradient layered composite absorbers were constructed according to the characteristic impedance stacks from large to small, which had better impedance matching and attenuation loss performance. The reflection loss was as low as -15.9 dB, which is lower than that of the single-layer aerogel material of the same thickness with Ti3C2Tx mass fractions of 1%(0 dB), 25%(-2.0 dB) and 50%(-10.9 dB), and the effective absorption bandwidth covers the entire X-band.

Conclusion Through the stacking method, the multilayer aerogel material constructing the impedance gradient step gradient structure can effectively balance the impedance matching and attenuation loss in the direction of electromagnetic wave propagation from high to low, and its reflection loss value is lower than that of the single-layer aerogel material of the same thickness, and good absorption is achieved. The impedance gradient structure can extend the propagation path of electromagnetic waves, enhance the absorption loss, and broaden the absorption bandwidth.

Key words: absorbing material, MXene, cellulose aerogel, layer structure, impedance step gradient, absorbing property

中图分类号: 

  • G316

图1

原料电镜照片与复合气凝胶制备示意图"

图2

气凝胶材料形貌图"

图3

CNF/Ti3C2Tx复合气凝胶化学组成分析图"

图4

CNF/Ti3C2Tx复合气凝胶的电磁参数"

图5

CNF/Ti3C2Tx复合气凝胶的反射损耗"

图6

阻抗阶跃渐变层结构气凝胶材料与均质吸波材料电磁性能对比图"

图7

阻抗阶跃渐变层结构气凝胶材料叠层示意图及仿真模型图"

图8

阻抗阶跃渐变层结构复合气凝胶材料总厚度4 mm时的仿真吸波性能对比"

图9

阻抗阶跃渐变层结构气凝胶材料吸波机制效果图"

图10

阻抗渐变3层结构复合气凝胶材料电磁性能"

[1] ARTS I, FISCHER A, DUCKETT D, et al. Information technology and the optimisation of experience: the role of mobile devices and social media in human-nature interactions[J]. Geoforum, 2021, 122: 55-62.
[2] FU Hai, BAI Yu'an, DUAN Shuqian, et al. Structure design of multi-layered ABS/CNTs composite foams for EMI shielding application with low reflection and high absorption characteristics[J]. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.157168.
[3] PANDE S, SINGH B P, MATHUR R B, et al. Improved electromagnetic interference shielding properties of MWCNT-PMMA composites using layered structures[J]. Nanoscale Research Letters, 2009, 4(4): 327-334.
doi: 10.1007/s11671-008-9246-x pmid: 20596500
[4] BARATHI DASSAN E G, ANJIANG AB RAHMAN A, ABIDIN M S Z, et al. Carbon nanotube-reinforced polymer composite for electromagnetic interference application: a review[J]. Nanotechnology Reviews, 2020, 9(1): 768-788.
[5] DADASHI FIROUZJAEI M, KARIMIZIARANIET M, MORADKHANI H, et al. MXenes: the two-dimensional influencer[J]. Materials Today Advances, 2022. DOI:10.1016/j.mtadv.2021.100202.
[6] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021. DOI:10.1126/science.abf1581.
[7] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: a review[J]. Advanced Functional Materials, 2020. DOI:10.1002/adfm.202000883.
[8] ZHANG Hengyu, CHEN Jianying, JI Hui, et al. Electromagnetic interference shielding with absorption-dominant performance of Ti3C2Tx-MXene/non-woven laminated fabrics[J]. Textile Research Journal, 2021, 91(21/22): 2448-2458.
[9] ZHANG Hengyu, JI Hui, DAI Guoliang, et al. Nanoarchitectonics of integrated impedance gradient MXene/PPy/polyester composite fabric for enhanced microwave absorption performance[J]. Composites Part A. Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2022.107163.
[10] LEI Zuomin, TIAN Dingkun, LIU Xuebin, et al. Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivit[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.130365.
[11] MEI Hui, YANG Dou, YANG Wenqiang, et al. 3D-printed impedance gradient Al2O3 ceramic with in-situ growing needle-like SiC nanowires for electromagnetic wave absorption[J]. Ceramics International, 2021, 47(22): 31990-31999.
doi: 10.1016/j.ceramint.2021.08.085
[12] LI Yang, SHEN Bin, YI Da, et al. The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams.[J]. Composites Science and Technology, 2017. 138: 209-216.
[13] YANG Zhen, LIANG Qingxuan, DUAN Yubing, et al. Electromagnetic characteristics and 3D-printing realization of a lightweight hierarchical wave-absorbing metastructure for low-frequency broadband absorp-tion[J]. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2023.169894.
[14] AHANKARI S, PAILWAL P, SUBHEDAR A, et al. Recent developments in nanocellulose-based aerogels in thermal applications: a review.[J]. ACS Nano, 2021, 15(3): 3849-3874.
doi: 10.1021/acsnano.0c09678 pmid: 33710860
[15] LI Qihua, YUAN Zhanhong, ZHANG Chi, et al. Tough, highly oriented, super thermal insulating regenerated all-cellulose sponge-aerogel fibers integrating a graded aligned nanostructure[J]. Nano Letters, 2022, 22(9): 3516-3524.
doi: 10.1021/acs.nanolett.1c03943 pmid: 35363493
[16] YAN Zhang, YU Jian, LU Jiayu, et al. Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance[J]. Journal of Alloys and Compounds, 2021. DOI:10.1016/j.jallcom.2021.159442.
[17] ZHANG Zilong, ZHANG Lei, CHEN Xiqiao, et al. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band[J]. Journal of Magnetism and Magnetic Materials, 2020. DOI:10.1016/j.jmmm.2019.166075.
[18] ZHOU Xuejiao, WEN Junwu, MA Xiaohua, et al. Manipulation of microstructure of MXene aerogel via metal ions-initiated gelation for electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2022, 624: 505-514.
doi: 10.1016/j.jcis.2022.05.166 pmid: 35679638
[19] DANG Saichao, LIN Yang, WEI Xuezhong, et al. Design and preparation of an ultrawideband gradient triple-layered planar microwave absorber using flaky carbonyl iron as absorbent.[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(20): 17651-17660.
[20] LV Jing, LIANG Xiaohui, JI Guangbin, et al. Structural and carbonized design of 1D FeNi/C nanofibers with conductive network to optimize electromagnetic parameters and absorption abilities[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7239-7249.
[21] SHENG An, REN Wei, YANG Yaqi, et al. Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2019.105692.
[22] HE Li, LI Xun, ZHAO Yuchen, et al. The multilayer structure design of magnetic-carbon composite for ultra-broadband microwave absorption via PSO algor-ithm[J]. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.165088.
[23] DING Ling, HUANG Ying, LIU Xudong, et al. Broadband and multilayer core-shell FeCo@C@mSiO2 nanoparticles for microwave absorption[J]. Journal of Alloys and Compounds, 2020. DOI:10.1016/j.jallcom.2019.152168.
[24] WANG Chaozi, LI Jiang, GUO Shaoyun. High-performance electromagnetic wave absorption by designing the multilayer graphene/thermoplastic polyurethane porous composites with gradient foam ratio structure[J]. Composites Part A: Applied Science and Manufacturing, 2019. DOI:10.1016/j.compositesa.2019.105522.
[25] YIN Lixian, TIAN Xiaoyong, SHANG Zhentao, et al. Ultra-broadband metamaterial absorber with graphene composites fabricated by 3D printing[J]. Materials Letters, 2019, 239: 132-135.
doi: 10.1016/j.matlet.2018.12.087
[26] HU Guirong, WU Changmei, WANG Qian, et al. Ultrathin nanocomposite films with asymmetric gradient alternating multilayer structures exhibit superhigh electromagnetic interference shielding performances and robust mechanical propertie[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.137537.
[27] CHEN Yiming, YANG Yang, XIONG Ye, et al. Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding[J]. Nano Today, 2021. DOI:10.1016/j.nantod.2021.101204.
[28] LIU Yane, ZHANG Mingang, GAO Yanan, et al. Regulate the reaction kinetic rate of lithium-sulfur battery by rational designing of TEMPO-oxidized cellulose nanofibers/rGO porous aerogel with monolayer MXene coating[J]. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2021.162821.
[29] ZHAI Jianyu, CUI Ce, LI Ang, et al. Waste cotton Fabric/MXene composite aerogel with heat generation and insulation for efficient electromagnetic interference shielding[J]. Ceramics International, 2022, 48(10): 13464-13474.
[30] CUI Yuhong, YANG Ke, ZHANG Fangrong, et al. Ultra-light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion[J]. Composites Part A: Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2022.106986.
[31] GUAN Xiaomei, YANG Zhihong, ZHOU Ming, et al. 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption[J]. Small Structures, 2022. DOI:10.1002/sstr.202200102.
[32] JI Biao, FAN Shangwu, KOU Sijie, et al. Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2Tx MXene/polymer films[J]. Carbon, 2021, 181: 130-142.
[33] Li Xiao, XU Diming, ZHOU Di, et al. Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption[J]. Carbon, 2023, 208: 374-383.
[34] LI Mengmeng, ZHANG Meiling, ZHAO Yanjiao, et al. Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding[J]. Carbohydrate Polymers, 2022. DOI:10.1016/j.carbpol.2022.119306.
[35] MA Meng, TAO Wenting, LIAO Xianjun, et al. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2022.139471.
[36] INDRUSIAK T, PEREIRA M I, HEITMANN A P, et al. Epoxy/ferrite nanocomposites as microwave absorber materials: effect of multilayered structure[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(16): 13118-13130.
[37] YANG Jianming, LIAO Xia, WANG Gui, et al. Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity[J]. Journal of Materials Chemistry C, 2020. 8(1): 147-157.
[1] 张琦, 屠佳妮, 张燕婷, 丁宁宇, 郝佳姝, 彭诗语. 经编贾卡间隔鞋面材料提花层结构对其拉伸性能的影响[J]. 纺织学报, 2024, 45(08): 150-157.
[2] 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(04): 151-159.
[3] 时吉磊, 唐春霞, 付少海, 张丽平. 柔韧隔热纤维素基气凝胶制备与性能[J]. 纺织学报, 2024, 45(04): 8-14.
[4] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[5] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[6] 冯英杰, 蒋高明, 吴光军, 金帅. 全成形运动护膝结构设计及成形方法[J]. 纺织学报, 2023, 44(01): 112-118.
[7] 詹必钦, 李玉贤, 董智佳, 丛洪莲. 全成形双层结构针织服装部件化虚拟展示研究[J]. 纺织学报, 2022, 43(08): 147-152.
[8] 张萌, 周赳. 附加纬接结的双层全显色结构设计原理和方法[J]. 纺织学报, 2022, 43(03): 83-88.
[9] 强荣, 冯帅博, 马茜, 陈博文, 陈熠. 钴/碳纤维复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(02): 30-36.
[10] 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27.
[11] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
[12] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[13] 邹亚男, 夏风林, 董智佳, 黄梦婷, 储开元. 经编全成形脖套的结构设计与工艺实现[J]. 纺织学报, 2021, 42(12): 76-80.
[14] 薛如晶, 莫晓璇, 刘福娟. 4种家蚕茧壳的结构与性能[J]. 纺织学报, 2021, 42(10): 41-46.
[15] 詹必钦, 丛洪莲, 吴光军. 全成形双层结构针织服装工艺模型研究与应用[J]. 纺织学报, 2021, 42(03): 149-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!