纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 71-76.doi: 10.13475/j.fzxb.20200805206

所属专题: 纳米纤维制备及应用

• 纤维材料 • 上一篇    下一篇

SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能

成悦1, 安琪1, 李大伟1,2, 付译鋆1,2(), 张伟1,2, 张瑜1,2   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.南通大学 安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
  • 收稿日期:2020-08-10 修回日期:2020-12-15 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 付译鋆
  • 作者简介:成悦(1997—),女,硕士生。主要研究方向为功能非织造材料设计开发。
  • 基金资助:
    国家自然科学基金项目(51803078);江苏省自然科学基金项目(BK20190927);国家级大学生创新创业训练计划项目(202010304028Z);江苏省博士后资助项目(2019Z104)

Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties

CHENG Yue1, AN Qi1, LI Dawei1,2, FU Yijun1,2(), ZHANG Wei1,2, ZHANG Yu1,2   

  1. 1. College of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2020-08-10 Revised:2020-12-15 Online:2021-03-15 Published:2021-03-17
  • Contact: FU Yijun

摘要:

为提高聚偏氟乙烯(PVDF)的压电性能,以PVDF和正硅酸乙酯(TEOS)为原料,N,N-二甲基甲酰胺(DMF)和丙酮为混合溶剂,利用原位复合溶胶-凝胶法和高压静电纺丝技术制备纳米SiO2原位掺杂PVDF复合纳米纤维膜,并分析纳米纤维膜的表面微观形貌、化学结构、力学性能以及压电性能等。结果表明:复合纳米纤维膜的面密度与厚度随TEOS质量的增加而增加;静电纺丝使PVDF中部分α相转变为β相,纯PVDF纳米纤维膜的β相含量是PVDF粉末的1.54倍,为(31.42±0.62)%;且原位掺杂SiO2后β相含量进一步提高,拉伸强力与输出电压均呈先增大后降低的趋势,当TEOS质量为1.643 g时PVDF纳米纤维膜β相含量最高为(42.59±0.62)%,原位掺杂PVDF纳米纤维膜拉伸强力最大为(8.03±0.19) N,输出电压最高为(2.33±0.13) V。

关键词: 原位复合, 溶胶-凝胶, 静电纺丝, 纳米纤维膜, 压电性能, 聚偏氟乙烯, 有机压电材料

Abstract:

To improve the piezoelectric properties of polyvinylidene fluoride (PVDF), silicon dioxide (SiO2) in-situ doped PVDF composite nano fiber membranes were prepared via the sol-gel method and high-voltage electrospinning technology with PVDF and ethylsilicate (TEOS) as raw materials, N, N-dimethyl formamide (DMF) and acetone as mixed solvent. Surface micromorphology, chemical composition, mechanical and piezoelectric properties of the nanofiber membranes were compared and analyzed. Results show that the mass and thickness of composite nanofiber membranes ascended with the increase of TEOS. Electrospinning converted part of the α phase in PVDF to β phase, and the β phase content of pure PVDF nanofiber membrane was (31.42±0.62)%, which was 1.54 times higher than PVDF powder. Moreover, the content of β phase was further improved by in-situ doping of nano-SiO2, and peak value of (42.59±0.62)% was achieved when the mass of TEOS was 1.643 g. With the increase of nano-SiO2, both tensile force and output voltage of composite nanofiber membranes demonstrated an increase-decrease trend. In addition, when the mass of TEOS was 1.643 g, SiO2 in-situ doped PVDF nanofiber membrane exhibited the highest tensile strength and output voltage, which were (8.03±0.19) N, and (2.33±0.13) V, respectively.

Key words: in-situ composite, sol-gel, electrospinning, nanofiber membrane, piezoelectric property, polyvinylidene fluoride, organic piezoelectric material

中图分类号: 

  • TS102.6

表1

实验方案设计"

试样编号 质量/g
TEOS PVDF DMF 丙酮
1# 0.000 1.110 6 4
2# 0.400 1.126 6 4
3# 0.802 1.136 6 4
4# 1.219 1.149 6 4
5# 1.643 1.163 6 4
6# 2.078 1.176 6 4

图1

不同纳米纤维膜的扫描电镜照片(×10 000)"

表2

不同纳米纤维膜的面密度与厚度"

试样编号 面密度/(g·m-2) 厚度/mm
1# 0.030 8±0.005 1 0.181 0±0.175 0
2# 0.033 0±0.005 2 0.184 7±0.022 0
3# 0.040 4±0.006 8 0.244 3±0.016 3
4# 0.048 7±0.007 6 0.285 0±0.006 0
5# 0.049 1±0.004 7 0.291 2±0.005 4
6# 0.069 1±0.002 0 0.311 8±0.014 4

图2

PVDF粉末及不同纳米纤维膜的红外光谱图"

图3

PVDF粉末和不同纳米纤维膜的β相含量"

图4

不同纳米纤维膜的拉伸强力"

图5

不同纳米纤维膜的输出电压"

[1] LI Jie, ZHAO Chunmao, XIA Kai, et al. Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification[J]. Applied Surface Science, 2019,463(1):626-634.
[2] LEE H, ZHANG S, BAR-COHEN Y, et al. High temperature, high power piezoelectric composite transducers[J]. Sensors, 2014,14(8):14526-14552.
doi: 10.3390/s140814526 pmid: 25111242
[3] DAGDEVIREN C, JOE P, TUZMAN O L, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation[J]. Extreme Mechanics Letters, 2016,9:269-281.
[4] XIN Yi, ZHU Jianfeng, SUN Hongshuai, et al. A brief review on piezoelectric PVDF nanofibers prepared by electrospinning[J]. Ferroelectrics, 2018,526(1):140-151.
[5] DEUTZ D B, MASCARENHAS N T, SCHELEN J B J, et al. Flexible piezoelectric touch sensor by alignment of lead-free alkaline niobate microcubes in PDMS[J]. Advanced Functional Materials, 2017,27(24):169-170.
[6] XIE M, ZHANG Y, KRANY M J, et al. Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic-polymer composites[J]. Energy & Environmental Science, 2018,11(10):2919-2927.
doi: 10.1039/c8ee01551a pmid: 30713583
[7] PAIK H, CHOI Y Y, HONG S, et al. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films[J]. Scientific Reports, 2015,5(1):4-5.
[8] BHAVANASI Venkateswarlu, KUMAR Vipin, PARIDA Kaushik, et al. Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide[J]. ACS Applied Materials & Interfaces, 2016,8(1):521-529.
doi: 10.1021/acsami.5b09502 pmid: 26693844
[9] HABIBUR R M, YAQOOB U, MUHAMMAD S, et al. The effect of RGO on dielectric and energy harvesting properties of P(VDF-TrFE) matrix by optimizing electroactive β phase without traditional polling process[J]. Materials Chemistry and Physics, 2018,215:46-55.
[10] PEREIRA F, CHAN A, VALLÉ K, et al. Design of interpenetrated networks of mesostructured hybrid silica and nonconductive poly(vinylidene fluoride)-cohexafluoropropylene (PVDF-HFP) polymer for proton exchange membrane fuel cell applications[J]. Chem Asian J, 2011,6(5):1217-1224.
doi: 10.1002/asia.201000784 pmid: 21360682
[11] PONNAIAH A, RENGAPILLAI S, KARUPPIAH D, et al. High capacity prismatic type layered electrode with anionic redox activity as an efficient cathode material and PVDF/SiO2 composite membrane for a sodium ion battery[J]. Polymers, 2020,12(3):662.
[12] 李哲. 溶胶-凝胶法制备纳米ZnO的实验研究[D]. 重庆: 重庆大学, 2008: 13-17.
LI Zhe. Experimental study on nanometer zinc oxide prepared by sol-gel[D]. Chongqing: Chongqing University, 2008: 13-17.
[13] 吴倩倩, 李珂, 杨立双, 等. PVDF/SiO2复合纳米纤维膜的制备及性能研究[J]. 南通大学学报(自然科学版), 2019,18(4):83-88.
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of PVDF/SiO2 composite nanofiber membranes[J]. Journal of Nantong University (Natural Science Edition), 2019,18(4):83-88.
[14] CAI Xiaomei, LEI Tingping, SUN Daoheng, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR[J]. RSC Advances, 2017,7(25):15382-15389.
[15] 吴倩倩, 倪瑞燕, 安琪, 等. PVDF/PAN微电流伤口敷料的制备及其性能[J]. 纺织导报, 2018(11):75-78.
WU Qianqian, NI Ruiyan, AN Qi, et al. Preparation and properties of PVDF/PAN micro-current wound dressings[J]. China Textile Leader, 2018(11):75-78.
[16] SINHA N, GOEL S, JOSEPH A J, et al. Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator[J]. Ceramics International, 2018,44(7):8582-8590.
[17] WAN A B, HWAL S J, SO-YUN K, et al. Smart sensor systems for wearable electronic devices[J]. Polymers, 2017,9(8):303-343.
[18] 李静静, 卢辉, 蒋洁, 等. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018,39(2):1-6.
LI Jingjing, LU Hui, JIANG Jie, et al. High voltage electrostatic spinning flexible zinc oxide/polyvinylidene fluoride composite fiber film[J]. Journal of Textile Research, 2018,39(2):1-6.
doi: 10.1177/004051756903900101
[19] 梁爽, 郑茂梅, 孙平, 等. 聚偏氟乙烯结晶结构及其β相制备方法的研究[J]. 压电与声光, 2013,35(5):719-723.
LIANG Shuang, ZHENG Maomei, SUN Ping, et al. Researches on crystal structure and preparation methods of β-phase polyvinylidene fluoride[J]. Piezoelectrics & Acoustooptics, 2013,35(5):719-723.
[20] TIWARI V, SRIVASTAVA G. Enhanced dielectric and piezoelectric properties of 0-3 PZT/PVDF composites[J]. Ceramics International, 2016,41(3):8008-8013.
doi: 10.1016/j.ceramint.2015.02.148
[21] 尹春生. 纳米SiO2与锌铝合金复合改性的聚氨酯/环氧树脂防腐涂层[D]. 南京: 南京航空航天大学, 2018: 54-59.
YIN Chunsheng. Nano-SiO2 and Zn-Al alloy multiply modified polyurethane/epoxy antiseptic coating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 54-59.
[22] XIA Yang, LI Jiaojiao, WANG Hongjie, et al. Synjournal and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2018,23(3):519-527.
doi: 10.1007/s10008-018-4161-2
[23] 徐润平. 二氧化硅原位交联耐溶剂复合纳滤膜的制备及其性能研究[D]. 杭州: 浙江理工大学, 2019: 20-23.
XU Runping. Preparation and characterization of silica in-situ crosslinking solvent-resistant composite nanofiltration membrane[D]. Hangzhou: Zhejiang Sci-Tech University, 2019: 20-23.
[24] KONG Fangyun, CHANG Mengzhou, WANG Zhenqing. Investigation of the effect of nanosilica on mechanical, structural, and fracture toughness of polyvinylidene fluoride films[J]. Materials Research Express, 2019,6(10):105369-105369.
doi: 10.1088/2053-1591/ab413b
[25] 魏延超, 洪晓斌, 许静, 等. 锂硫电池用LiPFSD/PVDF/SiO2复合膜的研究[J]. 电源技术, 2019,43(1):16-19.
WEI Yanchao, HONG Xiaobin, XU Jing, et al. Research on LiPFSD/PVDF/SiO2 composite membranes used in lithium-sulfur batteries[J]. Chinese Journal of Power Sources, 2019,43(1):16-19.
[26] 吴倩倩, 李珂, 杨立双, 等. 载药聚偏氟乙烯伤口敷料的制备及其性能[J]. 纺织学报, 2020,41(1):26-31.
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings.[J] Journal of Textile Research, 2020,41(1):26-31.
[27] WEI Fayun, CHENG Yue, WU Qianqian, et al. Preparation and properties of electrospun polyvinylidene fluoride (PVDF)/polyurethane (PU) composite nanofiber membranes[J]. Journal of Donghua University (English Edition), 2019,36(5):445-450.
[1] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[2] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[3] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[4] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[5] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[6] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[7] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[8] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[9] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[10] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[11] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[12] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[13] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[14] 王阳, 程春祖, 姜丽娜, 任元林, 郭迎宾. 紫外光接枝/溶胶-凝胶技术制备耐久性阻燃腈纶织物[J]. 纺织学报, 2020, 41(10): 107-115.
[15] 刘晋旭, 刘鹏清. 织物阻燃表面处理技术研究进展[J]. 纺织学报, 2020, 41(10): 178-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!