纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 54-62.doi: 10.13475/j.fzxb.20211204701

• 纤维材料 • 上一篇    下一篇

双金属离子交联海藻酸盐复合相变纤维的制备与性能

狄纯秋1, 郭静1,2(), 管福成1,2, 相玉龙1, 单继成1   

  1. 1.大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
    2.辽宁省功能纤维及复合材料工程技术中心, 辽宁 大连 116034
  • 收稿日期:2021-12-22 修回日期:2022-06-15 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 郭静(1962—),女,教授,博士。主要研究方向为高分子材料改性与成形加工技术。E-mail:guojing8161@163.com。
  • 作者简介:狄纯秋(1996—),男,硕士生。主要研究方向为高分子材料。
  • 基金资助:
    国家自然科学基金项目(51773024);国家自然科学基金项目(51373027);辽宁省科技创新团队项目(LT2017017)

Preparation and characterization of phase change fibers of bimetal ion crosslinked alginate composites

DI Chunqiu1, GUO Jing1,2(), GUAN Fucheng1,2, XIANG Yulong1, SHAN Jicheng1   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. Functional Fiber and Its Composite Materials Engineering Technology Research Center of Liaoning Province,Dalian, Liaoning 116034, China
  • Received:2021-12-22 Revised:2022-06-15 Published:2023-05-15 Online:2023-06-09

摘要:

为制备多功能性海藻酸盐复合纤维,以海藻酸钠(SA)和丝素蛋白(SF)、月桂酸-棕榈酸二元低共熔混合物(LA-PA)为原料,通过湿法纺丝技术制备Zn2+-Ca2+、Cu2+-Ca2+、Sr2+-Ca2+双金属离子交联海藻酸盐复合相变纤维。利用红外光谱和高斯拟合研究了复合相变纤维的氢键作用,考察了双金属离子交联体系对复合相变纤维结构和性能的影响。结果表明:相对于单一Ca2+交联体系,双金属离子交联体系分子内氢键含量增加,分子间氢键含量减少,纤维的断裂强度随β-折叠链结构含量增加而提高;Zn2+-Ca2+、Cu2+-Ca2+复合相变纤维具有优异的抗菌性能;纤维的最大结晶温度和熔融温度分别为26.19和36.71 ℃,最大相变焓为25.95 J/g,且经50次热循环后相变温度和相变焓差异较小,具有良好的蓄热稳定性。

关键词: 月桂酸-棕榈酸二元低共熔物, 海藻酸钠, 丝素蛋白, 湿法纺丝, 复合相变纤维, 蓄热材料

Abstract:

Objective In order to prepare multifunctional alginate composite fibers, Zn2+- Ca2+, Cu2+- Ca2+, Sr2+- Ca2+ bimetal ion crosslinked alginate composite phase change fibers were prepared from sodium alginate (SA), silk fibroin (SF), lauric acid palmitic acid binary eutectic mixture (LA-PA) by wet spinning technology.

Method The influence of bimetal ion crosslinking system on hydrogen bonding of composite phase change fibers was studied by infrared spectroscopy and Gaussian fitting, and the influences of different bimetal ion crosslinking systems on the structure, mechanical properties, thermal stability, thermal properties, water resistance and bacteriostasis of composite phase change fibers were investigated by scanning electron microscope, thermogravimetric analysis, differential scanning calorimetry.

Results The type of double ions was found to have a great influence on the molecular action. In comparison to the single Ca2+ion crosslinking system, the content increase of intramolecular hydrogen bonds in the bimetal ion crosslinking system resulted in content decrease of intermolecular hydrogen bonds, while the content of free hydroxyl groups hardly changed (Fig.2 and Tab.1). In fibers β-the content of folded chains is an important factor affecting the mechanical properties of fibers, and the breaking strength of fibers varies with β-the content of the folded chain structure increases as it increases (Tab.2, Tab.4). Owing to the wet spinning forming mechanism, there are grooves along the fiber axis on the fiber surface. The Zn2+- Ca2+, Sr2+- Ca2+, Cu2+- Ca2+crosslinked composite phase change fiber showed denser grooves than the single Ca2+ crosslinked composite fiber. Metal ions participated in the forming process of the composite phase change fiber (Fig.3 and Tab.2). The thermal stability of Cu2+- Ca2+ion crosslinked composite phase change fiber was found lower than that of the other three composite phase change fibers (Fig.4). The maximum crystallization temperature and melting temperatures of the fibers are 26.19 and 36.71 ℃, respectively, and the maximum phase transition enthalpy is 25.95 J/g; The phase change enthalpy of Ca2+, Zn2+-Ca2+, Sr2+-Ca2+composite phase change fibers is 24-26 J/g, with a small difference, the phase change enthalpy of Cu2+-Ca2+composite phase change fibers is relatively small, ranging from 17 to 18 J/g (Fig.5, Tab.5). After 50 thermal cycles, the crystallization enthaly and melting enthalpy of the composite phase change fiber decreased by 0.15 and 0.50 J/g, respectively, and the crystallization and melting temperatures changed by 0.78 and 0.40 ℃, respectively (Fig.6, Tab.6). Zn2+-Ca2+composite phase change fibers have the highest swelling rate, followed by Ca2+, Sr2+-Ca2+composite phase change fibers, and Cu2+-Ca2+composite phase change fibers have the lowest swelling rate, which is mainly determined by the content of metal ions in the fibers (Fig.7, Tab.2). Owing to the large amount of Zn2+and Cu2+inside the fiber, which can extensively interact with the bacterial cell wall and lead to lysis or inactivation of proteins in the bacteria, thereby killing the bacteria. Therefore, there is no obvious inhibition circle around the Sr2+-Ca2+and Ca2+composite phase change fibers, while there is an obvious inhibition circle around the Cu2+-Ca2+and Zn2+-Ca2+composite phase change fibers(Fig.8).

Conclusion The type of bimetal ions has a great influence on the molecular interaction, and the combined effect of the metal ion radius and the metal ion content causes the change of hydrogen bond interaction of different bimetallic ion crosslinking systems. The proper bimetal ion crosslinking system is helpful to improve the mechanical properties of the composite phase change fiber β-the content of folded chain is an important factor affecting the mechanical properties of fibers. The bimetal ion crosslinked composite phase change fiber has a phase change temperature of 21-37 ℃ suitable for human body and a high phase change enthalpy of 17-26 J/g, which has broad application prospects in clothing and other fields. The phase change temperature and enthalpy of the composite phase change fiber before and after 50 thermal cycles have little difference, and the bimetal ion crosslinked composite phase change fiber has good heat storage durability. The water resistance of Cu2+- Ca2+composite phase change fiber is obviously superior to the other three composite phase change fibers. Cu2+- Ca2+and Zn2+- Ca2+composite phase-change fibers have good antibacterial properties against these two types of bacteria.

Key words: lauric acid-palmitic acid binary eutectic mixture, sodium alginate, silk fibroin, wet spinning, composite phase change fiber, heat storage material

中图分类号: 

  • O636.1

图1

双金属离子交联复合相变纤维工艺流程图 1为纺丝料筒;2为计量泵;3为喷丝板;4为凝固浴;5为定形浴;6为洗涤浴;7为热牵伸辊;8为卷绕机。"

图2

不同双金属离子交联复合相变纤维的红外光谱图及高斯拟合曲线"

表1

双金属离子交联复合相变纤维的氢键拟合结果"

凝固浴种类 氢键类型 缩写 波数/cm-1 相对强度/%
含量 合计
Ca2+ 自由羟基 —OH 3 628 0.15 0.15
分子内氢键 OH…OH 3 550 6.93 35.20
OH 环状紧密缔合 3 205 28.27
分子间氢键 OH…π 3 601 2.99 64.65
OH…醚O 3 431 58.77
OH…N 3 106 2.86
Zn2+-Ca2+ 自由羟基 —OH 3 628 0.25 0.25
分子内氢键 OH…OH 3 542 13.06 36.01
OH 环状紧密缔合 3 243 22.95
分子间氢键 OH…π 3 599 4.22 63.74
OH…醚O 3 428 53.71
OH…N 3 119 5.77
Sr2+-Ca2+ 自由羟基 —OH 3 605 3.91 3.91
分子内氢键 OH…OH 3 438 41.72 51.57
OH 环状紧密缔合 3 174 9.85
分子间氢键 OH…π 3 547 12.44 44.52
OH…醚O 3 281 27.26
OH…N 3 100 4.7
Cu2+-Ca2+ 自由羟基 —OH 3 628 2.42 2.42
分子内氢键 OH…OH 3 527 7.92 37.11
OH 环状紧密缔合 3 234 29.19
分子间氢键 OH…π 3 584 6.27 60.47
OH…醚O 3 428 49.91
OH…N 3 111 4.25

表2

双金属离子交联复合相变纤维元素含量"

凝固浴
种类
元素含量/% 金属离子与
钙离子含
量的比值
特征金属离子
Ca2+ 48.83 37.37 13.80 0
Zn2+-Ca2+ 52.97 38.94 5.76 2.33 0.404
Sr2+-Ca2+ 55.52 35.65 6.28 2.55 0.406
Cu2+-Ca2+ 55.27 27.18 3.97 13.58 3.420

表3

双金属离子交联复合相变纤维的力学性能"

凝固浴
种类
断裂强度/
(cN·dtex-1)
断裂伸长率/
%
初始模量/
(cN·dtex-1)
Ca2+ 1.06 10.69 27.16
Zn2+-Ca2+ 1.13 8.42 29.92
Sr2+-Ca2+ 1.12 10.62 22.98
Cu2+-Ca2+ 0.81 5.83 27.61

表4

双金属离子交联复合相变纤维二级结构拟合结果"

凝固浴
种类
酰胺Ⅰ谱带各组分含量/%
β-折叠 α-螺旋 无序结构
Ca2+ 58.61 41.38 0.01
Zn2+-Ca2+ 63.81 35.86 0.33
Sr2+-Ca2+ 61.66 38.27 0.07
Cu2+-Ca2+ 46.73 51.41 1.86

图3

不同双金属离子交联复合相变纤维的表面形貌(×500)"

图4

双金属离子交联复合相变纤维的TG及DTG曲线"

表5

双金属离子交联复合相变纤维的DSC参数"

凝固浴
种类
结晶
温度/℃
结晶焓/
(J·g-1)
熔融温度/
熔融焓/
(J·g-1)
相变
Ca2+ 22.19 25.95 36.54 24.89 固相-固相
Zn2+-Ca2+ 26.19 24.92 36.54 24.05 固相-固相
Sr2+-Ca2+ 21.18 25.76 36.02 24.98 固相-固相
Cu2+-Ca2+ 24.98 17.53 36.71 17.09 固相-固相

图5

双金属离子交联复合相变纤维的DSC曲线及相变机制"

图6

双金属离子交联复合相变纤维的热循环曲线"

表6

双金属离子交联复合相变纤维热循环50次前后DSC数据"

循环
次数
结晶温度/
结晶焓/
(J·g-1)
熔融温度/
熔融焓/
(J·g-1)
相变
1 21.18 25.76 36.02 24.98 固相-固相
50 21.96 25.61 36.42 24.48 固相-固相

图7

双金属离子交联复合相变纤维的耐水性"

图8

双金属离子交联复合相变纤维的抗菌效果图"

[1] KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. The Journal of Energy Storage, 2020. DOI: 10.1016/j.est.2019.101047.
doi: 10.1016/j.est.2019.101047
[2] YANG Jie, TANG Lisheng, BAI Lu, et al. High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials[J]. Materials Horizons, 2019, 6(2): 250-273.
doi: 10.1039/C8MH01219A
[3] ZHANG P, XIAO X, MA Z W. A review of the com posite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165:472-510.
doi: 10.1016/j.apenergy.2015.12.043
[4] THANAKKASARANEE S, SEO J. Effect of halloysite nanotubes on shape stabilities of polyethylene glycol-based composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2019, 132:154-161.
doi: 10.1016/j.ijheatmasstransfer.2018.11.160
[5] WEI Yanhong, LI Juanjuan, SUN Furong, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8):1858-1865.
doi: 10.1039/C7GC03595K
[6] DU X, QIU J, DENG S, et al. Alkylated nanofibrillated cellulose/carbon nanotubes aerogels supported form-stable phase change composites with improved n-alkanes loading capacity and thermal conductivity[J]. ACS Applied Materials & Interfaces, 2020, 12(5):5695-5703.
[7] ZHANG Rui, GUO Jing, WU Jing, et al. Preparation,characterization and properties of high-salt-tolerance sodium alginate/krill protein composite fibers[J]. Fibers & Polymers, 2018, 19(5):1074-1083.
[8] QI R, GUO J, LIU Y, et al. Effects of salt content on second ary structure of protein in sodium alginate/antarctic krill protein composite system and characterization of fiber properties[J]. Dyes and Pigments, 2019.DOI: 10.1016/j.dyepig.2019.107686.
doi: 10.1016/j.dyepig.2019.107686
[9] ZHANG Rui, GUO Jing, ZHAO Miao, et al. Effect of graphene oxide on the molecules of a sodium alginate-krill protein composite system and characterization of cal properties[J]. Journal of Applied Polymer Science, 2018.DOI: 10.1002/app.46642.
doi: 10.1002/app.46642
[10] WANG Q, ZHANG L, LIU Y, et al. Characterization and functional assessment of alginate fibers prepared by metal-calcium ion complex coagulation bath[J]. Carbohydrate Polymers, 2019. DOI: 10.1016/j.carbpol.2019.115693.
doi: 10.1016/j.carbpol.2019.115693
[11] 柯惠珍, 蔡以兵, 魏取福, 等. 纳米SiO2对静电纺LA-PA/PET复合相变纤维形态和热学性能的影响[J]. 功能材料, 2012, 43(3):309-312.
KE Huizhen, CAI Yibing, WEI Qufu, et al. Effects of nano-SiO2 on morphology and thermal energy storage of electrospun LA-PA/PET composite phase change fibers[J]. Journal of Functional Materials, 2012, 43(3):309-312.
[12] BILAS R, SRIRAM K, MAHESWARI P U, et al. Highly biocompatible chitosan with super paramagnetic calcium ferrite (CaFe2O4) nanoparticle for the release of ampicillin[J]. International Journal of Biological Macromolecules, 2017, 97:513-525.
doi: 10.1016/j.ijbiomac.2017.01.036
[13] YUAN H, BAI H, LU X, et al. Effect of alkaline pH on formation of lauric acid/SiO2 nanocapsules via solgel process for solar energy storage[J]. Solar Energy, 2019, 185:374-386.
doi: 10.1016/j.solener.2019.04.074
[14] LI L, WEI K M, LIN F, et al. Effect of silicon on the formation of silk fibroin/calcium phosphate compo-site[J]. Journal of Materials Science: Materials in Medicine, 2008, 19(2):577-582.
doi: 10.1007/s10856-007-3004-y
[15] YANG Lijun, GUO Jing, YU Yue, et al. Hydrogen bonds of sodium alginate/antarctic krill protein composite material[J]. Carbohydrate Polymers, 2016, 142: 275-281.
doi: 10.1016/j.carbpol.2016.01.050 pmid: 26917400
[16] ZHANG Y, ZHAO W, YANG R. Steam flash explosion assisted dissolution of keratin from feathers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2036-2042.
[17] WANG K, LI R, MA J H, et al. Extracting keratin from wool by using L-cysteine[J]. Green Chem, 2016, 18(2):476-481.
doi: 10.1039/C5GC01254F
[18] MA Y, GUO J, ZHAO M, et al. The effect of coagula tion bath temperature on mechanical, morphology and thermal properties of cellulose/antarctic krill protein composite fibers[J]. Langmuir, 2020, 36(20):5647-5653.
doi: 10.1021/acs.langmuir.0c01148
[19] HUANG X, GUO J, HE J, et al. Novel phase change materials based on fatty acid eutectics and triallyl isocyanurate composites for thermal energy storage[J]. Journal of Applied Polymer Science, 2017. DOI: 10.1002/app.44866.
doi: 10.1002/app.44866
[20] ALAHYARIBEIK S, ULLAH A. Methods of keratin extraction from poultry feathers and their effects on antioxidant activity of extracted keratin[J]. International Journal of Biological Macromolecules, 2020, 148:449-456.
doi: S0141-8130(19)38370-9 pmid: 31954788
[1] 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31.
[2] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[3] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[4] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[5] 杜璇, 丁长坤, 岳程飞, 苏杰梁, 闫旭焕, 程博闻. 凝固浴对再生胶原纤维结构与性能的影响[J]. 纺织学报, 2022, 43(09): 58-63.
[6] 杨春利, 周伟贤, 梁京龙, 林桂圳, 刘杰, 倪延朋, 刘云, 商胜龙, 朱平. 磁场诱导结构生色海藻酸钙纤维的快速制备及其性能[J]. 纺织学报, 2022, 43(09): 64-69.
[7] 刘蛟, 陈韶娟, 吴韶华. 丝素蛋白/聚左旋乳酸纳米纤维纱线肌腱补片的制备及其性能[J]. 纺织学报, 2022, 43(08): 60-66.
[8] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[9] 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48.
[10] 顾张弘, 姚响, 王锦思, 张耀鹏. 具有细胞黏附反差特性的单层平行丝素蛋白纤维图案的制备及其性能[J]. 纺织学报, 2022, 43(05): 1-6.
[11] 雷彩虹, 俞林双, 朱海霖, 郑涛, 陈建勇. 不同水解方式下蚕丝丝素蛋白材料的止血性能[J]. 纺织学报, 2022, 43(04): 15-19.
[12] 张涛, 王富平, 陈国宝, 吴基玉, 庞亚妮, 陈忠敏. 壳聚糖基抑菌凝胶剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 71-77.
[13] 姚若彤, 赵婧媛, 闫一欣, 段立蓉, 王恬, 严佳, 张淑军, 李刚. 新型可降解编织结构神经再生导管的制备及其性能[J]. 纺织学报, 2022, 43(02): 125-131.
[14] 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20.
[15] 姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!