纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 125-131.doi: 10.13475/j.fzxb.20210902007

• 纺织工程 • 上一篇    下一篇

新型可降解编织结构神经再生导管的制备及其性能

姚若彤1,2, 赵婧媛1, 闫一欣1, 段立蓉1,2, 王恬3, 严佳1,2, 张淑军1, 李刚1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.苏州大学 现代丝绸国家工程实验室,江苏 苏州 215123
    3.北卡罗莱纳州立大学 纺织学院, 罗利 27695
  • 收稿日期:2021-09-07 修回日期:2021-11-21 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 李刚
  • 作者简介:姚若彤(1999—),女,硕士生。研究方向为生物医用纺织材料。
  • 基金资助:
    国家重点研发计划项目(2021YFE0111100);中国纺织工业联合会应用基础研究项目(J202002);江苏省第十五批“六大人才高峰”高层次人才项目(GDZB-035);南通市科技计划应用基础研究项目(JC2020082);国家先进功能纤维创新中心科研攻关项目(2021-fx010104)

Fabrication of novel biodegradable braided nerve grafts for nerve regeneration

YAO Ruotong1,2, ZHAO Jingyuan1, YAN Yixin1, DUAN Lirong1,2, WANG Tian3, YAN Jia1,2, ZHANG Shujun1, LI Gang1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
    3. Wilson College of Textiles, North Carolina State University, Raleigh 27695, USA
  • Received:2021-09-07 Revised:2021-11-21 Published:2022-02-15 Online:2022-03-15
  • Contact: LI Gang

摘要:

为研制具有良好力学性能和生物相容性的人工神经导管,采用编织工艺、静电纺丝技术和冷冻干燥技术制备一种含有壳聚糖涂层-编织层-纤维海绵层的3层复合结构人工神经导管,研究轴纱、内外层结构和镁离子质量浓度对其性能的影响,并对导管的表面形貌、力学性能、离子缓释性能和生物相容性进行表征。结果表明:轴纱和编织纱共同参与编织时,神经导管形变50%的径向压缩性能为1.3 N,轴纱断裂时的轴向拉伸应力为30 N,具有良好的力学性能;导管内海绵层呈相互连通的多孔结构,孔径分布均匀(0.04~0.08 mm);导管内镁离子可缓慢释放28 d;当镁离子溶液质量浓度为0.02 g/mL时,导管对细胞增殖的促进作用最显著。这为神经导管的材料选择和结构优化提供新思路。

关键词: 人工神经导管, 周围神经修复, 可降解, 丝素蛋白, 镁离子

Abstract:

In order to develop artificial nerve guidance conduits (NGCs) with good mechanical properties and biocompatibility, this paper describes a three-layer composite artificial nerve graft made up with a chitosan coating layer, a braided layer and a fibrous sponge layer using traditional braiding, electrospinning and freeze-drying techniques. The morphology, mechanical properties, biocompatibility and sustained-release properties were investigated, studying the effects of axial yarn, the outer and inner layers and magnesium ion concentration on its performance. The results showed that the prepared NGCs with braided and axial yarns possess good mechanical properties. The radial compressive property of the NGC with 50% deformation is 1.3 N and the axial tensile stress to yarn fracture is 30 N. The sponge layer features an inter-connected porous structure with uniform pore size distribution (0.04-0.08 mm). The magnesium ion in the NGC can be sustainably released for 28 d. When the concentration of magnesium ion solution is 0.02 g/mL, the NGC has the greatest effect on promoting cell proliferation. This paper provides new ideas for selecting materials for NGCs and optimizing their structural properties.

Key words: artificial nerve graft, peripheral nerve repair, biodegradability, silk fibroin, magnesium ion

中图分类号: 

  • TS102.3

表1

神经导管的制备参数"

编号 编织纱线密度/tex 轴纱线密度/tex 涂层 内层
1 9 5 壳聚糖 海绵层
2 9 壳聚糖 海绵层
3 9 5
4 9

图1

静电纺纳米纤维的形貌及其直径分布"

表2

含不同质量浓度镁离子的静电纺丝薄膜的元素含量"

样品中M g 2 +质量
浓度/(g·mL-1)
元素 质量分数/% 均方差 原子含量/%
0 C 67.152 0.680 73.143
O 32.838 0.679 26.852
Mg 0.010 0.062 0.006
0.01 C 69.003 0.607 74.850
O 30.666 0.608 24.972
Mg 0.310 0.067 0.177
0.015 C 69.197 0.607 75.013
O 30.509 0.608 24.829
Mg 0.294 0.068 0.158
0.02 C 67.662 0.611 73.790
O 31.390 0.613 25.699
Mg 0.948 0.079 0.511

表3

丝素蛋白的红外光谱特征峰[24]"

结构名称 浓度/cm-1 结构名称 浓度/cm-1
酰胺 Ⅰ 1 650~1 660 酰胺 Ⅰ 1 625~1 640
Silk Ⅰ 酰胺 Ⅱ 1 535~1 545 Silk Ⅱ 酰胺 Ⅱ 1 515~1 525
酰胺 Ⅲ 1 253 酰胺 Ⅲ 1 235

图2

静电纺丝薄膜的红外光谱图"

图3

复合编织结构神经导管的扫描电镜照片"

图4

复合编织结构神经导管中纳米纤维海绵层中的孔径分布"

图5

神经导管的力学性能"

图6

神经导管内镁离子的缓释曲线"

图7

CCK-8细胞增殖图"

[1] AHN H S, HWANG J Y, KIM M S, et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve[J]. Acta Biomaterialia, 2015(13): 324-334.
[2] WEI C, MUNISH B S, LEE P, et al. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration[J]. Acta Biomaterialia, 2018(73): 302-311.
[3] CHIONO V, TONDA-TURO C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering[J]. Progress in Neurobiology, 2015(131): 87-104.
[4] XUE C, ZHU H, TAN D, et al. Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(2): 1143-1153.
[5] FAROKHI M, MOTTAGHITALAB F, SHOKRGOZAR M A, et al. Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers[J]. International Materials Reviews, 2017, 62(7): 367-391.
[6] SARKER M D, NAGHIEH S, MCINNES A D, et al. Regeneration of peripheral nerves by nerve guidance conduits: influence of design, biopolymers, cells, growth factors, and physical stimuli[J]. Progress in Neurobiology, 2018(171): 125-150.
[7] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(9): 191-200.
YAN Jia, LI Gang. Research progress on medical textiles[J]. Journal of Textile Research, 2020, 41(9): 191-200.
[8] 门永芝, 於子卫. 生物材料构建神经导管修复周围神经损伤的研究进展[J]. 听力学及言语疾病杂志, 2014, 22(6): 654-658.
MEN Yongzhi, YU Ziwei. Research progress of nerve conduit constructed by biomaterials in repairing peripheral nerve injury[J]. Journal of Audiology and Speech Pathology, 2014, 22(6): 654-658.
[9] GODAVITARNE C, ROBERTSON A, PETERS J, et al. Biodegradable materials[J]. Orthopaedics and Trauma, 2017, 31(5): 316-320.
doi: 10.1016/j.mporth.2017.07.011
[10] LI G, LIU J, ZHENG Z, et al. Structural mimetic silk fiber-reinforced composite scaffolds using multi-angle fibers[J]. Macromolecular Bioscience, 2015, 15(8): 1125-1133.
doi: 10.1002/mabi.201400502
[11] ZHANG Z, ZHAO Z, ZHENG Z, et al. Functionalization of polyethylene terephthalate fabrics using nitrogen plasma and silk fibroin/chitosan microspheres[J]. Applied Surface Science, 2019(495): 143481.
[12] TIAN Y, WU Q, LI F, et al. A flexible and biocompatible bombyx mori silk fibroin/wool keratin composite scaffold with interconnective porous struc-ture[J]. Colloids and Surfaces B: Biointerfaces, 2021(208): 112080.
[13] FAROKHI M, MOTTAGHITALAB F, SHOKRGOZAR M A, et al. Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers[J]. International Materials Reviews, 2017, 62(7): 367-391.
doi: 10.1080/09506608.2016.1252551
[14] ANITHA A, SOWMYA S, KUMAR P, et al. Chitin and chitosan in selected biomedical applications[J]. Progress in Polymer Science, 2014, 39(9): 1644-1667.
doi: 10.1016/j.progpolymsci.2014.02.008
[15] VENNEMEYER J J, HOPKINS T, HERSHCOVITCH M, et al. Initial observations on using magnesium metal in peripheral nerve repair[J]. Journal of Biomaterials Applications, 2015, 29(8): 1145-1154.
doi: 10.1177/0885328214553135
[16] PARHAM S, KHARAZI A Z, BAKHSHESHI-RAD H R, et al. Electrospun nano-fibers for biomedical and tissue engineering applications: a comprehensive review[J]. Materials 2020, 13(9): 2153.
doi: 10.3390/ma13092153
[17] 徐云强, 刘迎节, 李瑞欣, 等. 胶原/丝素蛋白神经导管修复周围神经缺损的研究与应用进展[J]. 中国组织工程研究, 2016, 20(38): 5745-5751.
XU Yunqiang, LIU Yingjie, LI Ruixin, et al. Collagen/silk fibroin nerve conduits used for repairing peripheral nerve defect: application and development[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(38): 5745-5751.
[18] ZHENG Z, GUO S, LIU Y, et al. Lithium-free processing of silk fibroin[J]. Journal of Biomaterials Applications, 2016, 31(3): 450-463.
doi: 10.1177/0885328216653259
[19] YANG Y, WANG H, YAN F, et al. Bioinspired porous octacalcium phosphate/silk fibroin composite coating materials prepared by electrochemical deposition[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5634-5642.
[20] ZHU M, WANG K, MEI J, et al. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts[J]. Acta Biomaterialia, 2014, 10(5): 2014-2023.
doi: 10.1016/j.actbio.2014.01.022
[21] XIE X, YU J, ZHAO Z, et al. Fabrication and drug release properties of curcumin-loaded silk fibroin nanofibrous membranes[J]. Adsorption Science & Technology, 2019, 37(5-6): 412-424.
[22] HSUEH Y, CHANG Y, HUANG T, et al. Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells[J]. Biomaterials, 2014, 35(7): 2234-2244.
doi: 10.1016/j.biomaterials.2013.11.081
[23] 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(2): 74-79.
HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve[J]. Journal of Textile Research, 2021, 42(2): 74-79.
[24] ZHANG S, WANG J, ZHENG Z, et al. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair[J/OL]. Acta Biomaterialia, 2021 [2021-09-05]. https://doi.org/10.1016/j.actbio.2021.07.02.
[25] XU T, DING Y C, WANG Z, et al. Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor[J]. Journal of Materials Chemistry C, 2017, 5(39): 10288-10294.
doi: 10.1039/C7TC03456C
[26] KIM S M, LEE M S, JEON J, et al. Biodegradable nerve guidance conduit with microporous and micropatterned poly(lactic-co-glycolic acid)-accelerated sciatic nerve regeneration[J]. Macromolecular Bioscience, 2018, 18(12): 1800290.
doi: 10.1002/mabi.v18.12
[1] 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57.
[2] 姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11): 1-8.
[3] 孙钰晟, 左保齐. 高分子聚合物硬骨缺损修复材料研究进展[J]. 纺织学报, 2021, 42(08): 175-184.
[4] 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41-48.
[5] 王亚宁, 周楚帆, 乌婧, 王华平. 生物基异己糖醇聚酯的制备及其构效关系研究进展[J]. 纺织学报, 2021, 42(08): 8-16.
[6] 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46-53.
[7] 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184.
[8] 杨亚, 闫凤祎, 王卉, 张克勤. 丝素蛋白/磷酸八钙复合材料生物界面的蛋白质吸附和细胞响应[J]. 纺织学报, 2021, 42(02): 41-46.
[9] 宋广州, 涂芳芳, 丁梦瑶, 戴梦男, 殷音, 董凤林, 王建南. 丝素蛋白负电性增强改性及其对降钙素基因相关肽的加载能力[J]. 纺织学报, 2020, 41(12): 7-12.
[10] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[11] 孙广东, 黄益, 邵建中, FAN Qinguo. 光交联丝素蛋白水凝胶的蓝光引发体系[J]. 纺织学报, 2020, 41(04): 64-71.
[12] 钟红荣, 方艳, 包红, 吴婷芳, 张小宁, 徐水, 朱勇. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020, 41(02): 13-19.
[13] 张治斌, 李刚, 毛森贤, 厉巽巽, 陈玉霜, 毛青山, 李翼, 潘志娟, 王晓沁. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12.
[14] 包红, 徐水, 张小宁, 成国涛, 朱勇. 家蚕丝素蛋白阳离子化及其对羊毛性状的影响[J]. 纺织学报, 2019, 40(07): 24-30.
[15] 林永佳, 杨董超, 张佩华, 顾岩. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(07): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[2] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[3] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[4] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[5] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[6] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20 -28 .
[7] 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16 -22 .
[8] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95 -100 .
[9] 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46 -53 .
[10] 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41 -48 .