纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 41-48.doi: 10.13475/j.fzxb.20200901308

• 纤维材料 • 上一篇    下一篇

酸-醇体系丝素蛋白水凝胶制备与性能表征

刘浩1, 路明磊1, 黄晓卫1,2, 王娜1,2, 王雪芳1,2, 宁新2,3, 明津法1,2,3()   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 非织造材料与产业用纺织品创新研究院, 山东 青岛 266071
    3.山东省特型非织造材料工程研究中心, 山东 青岛 266071
  • 收稿日期:2020-09-04 修回日期:2021-04-28 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 明津法
  • 作者简介:刘浩(1995—),男,硕士生。主要研究方向为丝素蛋白生物医用材料的开发。
  • 基金资助:
    中国博士后科学基金项目(2016M592141);山东省博士后科学基金项目(201603067)

Preparation and characterization of silk fibroin hydrogel in acid-alcohol system

LIU Hao1, LU Minglei1, HUANG Xiaowei1,2, WANG Na1,2, WANG Xuefang1,2, NING Xin2,3, MING Jinfa1,2,3()   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, Qingdao, Shandong 266071, China
    3. Shandong Special Nonwoven Materials Engineering Research Center, Qingdao, Shandong 266071, China
  • Received:2020-09-04 Revised:2021-04-28 Published:2021-08-15 Online:2021-08-24
  • Contact: MING Jinfa

摘要:

针对再生丝素蛋白水凝胶形貌不可控、凝胶速度慢、压缩性能差的问题,提出了一种乙酸-乙醇体系共同促进丝素蛋白快速凝胶的方法。通过研究相同酸性条件下,不同质量分数乙醇对水凝胶形貌、聚集态结构、热稳定性、压缩性能等的影响,探索水凝胶内部纤维结构的成形条件以及不同形貌下水凝胶的结构与性能差异。结果表明:相同酸性条件下随着乙醇质量分数的提高,水凝胶的结构与性能均得到改善,凝胶时间由12~14 h缩减到1 h 左右,水凝胶形貌逐渐由几十到几百微米的孔洞结构向纤维结构转变,水凝胶中丝素蛋白结构以β-折叠为主;当乙醇质量分数为5.0%时,纤维直径为(1.09±0.5) μm,在干态下应变为60%时的压缩强度为(75.16±3.79) kPa,在湿态下压缩回复率达到伸长的63%。

关键词: 丝素蛋白, 水凝胶, 酸-醇体系, 压缩性能, 聚集态结构, 医用材料

Abstract:

In order to achieve the controllable morphology of silk fibroin hydrogel and to improve the gelling speed and compression properties, a simple fabrication method for silk fibroin hydrogel in acid-alcohol system was developed. This paper reports the effect of alcohol with different mass ratio on the morphology, aggregation structure, thermal property and compressive property of hydrogel at the same acidic condition. The research explored the forming conditions for silk fibroin hydrogels, and the differences in structure and properties of hydrogel. The results show that the structure and properties of hydrogels are improved with increased use of alcohol, which also benefited the gelation time reduction from 12-14 h to 1 h. In relation to this, the morphology of hydrogel gradually changes from pore to fibrous state. Moreover, the crystallization structure of silk fibroin in hydrogels was found to be mainly β-sheet. When the mass ratio of alcohol was set to 5.0%, the fiber diameter reached (1.09±0.5) μm. The hydrogels demonstrated a compressive strength of (75.16±3.79) kPa at 60% strain in dry state, and the compression recovery rate reached 63% in wet state.

Key words: silk fibroin, hydrogel, acid-alcohol system, compression property, crystallization structure, medical material

中图分类号: 

  • TS109

表1

丝素蛋白水凝胶实验参数"

样品
名称
SF质量
分数/%
乙醇质量
分数/%
温度/
冻干后成
形状况
SF-0 3 0.0 25 成形良好
SF-1 3 1.0 25 成形良好
SF-2.5 3 2.5 25 成形良好
SF-5 3 5.0 25 成形良好
SF-10 3 10.0 25 成形良好
SF-20 3 20.0 25 未成形

图1

不同质量分数乙醇诱导丝素蛋白水凝胶的扫描电镜照片"

图2

不同质量分数乙醇诱导SF水凝胶的拉曼光谱图"

图3

不同质量分数乙醇诱导SF水凝胶的二级结构"

图4

不同质量分数乙醇诱导丝素蛋白水凝胶的X射线衍射光谱图"

图5

不同质量分数乙醇诱导丝素蛋白水凝胶的DSC和TG曲线"

图6

干态和湿态条件下丝素蛋白水凝胶的压缩性能"

[1] 张叶敏. 双酶交联明胶/壳聚糖互穿网络生物水凝胶的制备与表征[D]. 南京:东南大学, 2015: 1-2.
ZHANG Yemin. Preparation and characterization of gelatin-chitosan IPN biohydrogels by bienzymatic crosslinking approach[D]. Nanjing: Southeast University, 2015: 1-2.
[2] JANANI Guru, KUMAR Manishekhar, CHOUHAN Dimple, et al. Insight into silk based biomaterials from physicochemical attributes to recent biomedical applications[J]. ACS Applied Bio Materials, 2019, 2:5460-5491.
doi: 10.1021/acsabm.9b00576
[3] 李加乐, 谭云飞, 谭绪林, 等. 丝素蛋白水凝胶材料在组织工程中的应用研究进展[J]. 材料导报, 2018, 32(S2):176-182.
LI Jiale, TAN Yunfei, TAN Xulin, et al. Research progress on the applications of silk fibroin hydrogel in the tissue engineering[J]. Materials Reports, 2018, 32(S2):176-182.
[4] 周倩, 袁久刚, 李澜, 等. 丝素蛋白的磷酸化及其仿生矿化膜的制备[J]. 纺织学报, 2018, 39(11):8-13.
ZHOU Qian, YUAN Jiugang, LI Lan, et al. Phosphorylation of silk fibroin and preparation of biomimetic mineralization membrane thereof[J]. Journal of Textile Research, 2018, 39(11):8-13.
[5] GRIGORYAN B, PAULSEN S J, CORBETT D C, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019(364):458-464.
[6] HAN Yanxin, YANG Wenbo, CUI Wenguo, et al. Development of functional hydrogels for heart failure[J]. Journal of Materials Chemistry B, 2019(7):1563.
[7] LIU Bin, SONG Yuwei, JIN Li, et al. Silk structure and degradation[J]. Colloids and Surfaces B: Biointerfaces, 2015, 131:122-128.
doi: 10.1016/j.colsurfb.2015.04.040 pmid: 25982316
[8] 吴建兵, 张理想, 唐麒麟. 药物控释用丝素蛋白纳微米球的研究进展[J]. 丝绸, 2020, 57(5):6-10.
WU Jianbing, ZHANG Lixiang, TANG Qilin. Research progress of silk fibroin nano-microspheres for drug-controlled release[J]. Journal of Silk, 2020, 57(5):6-10.
[9] 吴锡龙. 再生丝素可注射原位水凝胶的制备与表征[D]. 苏州: 苏州大学, 2012:5-8.
WU Xilong. Preparation and characterization of injectable in-situ regenerated silk hydrogels[D]. Suzhou: Soochow University, 2012: 5-8.
[10] NAGAEKAR Shailesh, PATIL Avinash, LELE Ashish, et al. Some mechanistic insights into the gelation of regenerated silk fibroin sol[J]. Industrial & Engineering Chemistry Research, 2009, 48(17):8014-8023.
doi: 10.1021/ie801723f
[11] 孙广东, 黄益, 邵建中, 等. 光交联丝素蛋白水凝胶的蓝光引发体系[J]. 纺织学报, 2020, 41(4):64-71.
SUN Guangdong, HUANG Yi, SHAO Jianzhong, et al. Blue light initiated photocrosslinking of silk fibroin hydrogel[J]. Journal of Textile Research, 2020, 41(4):64-71.
[12] 张轩, 程远, 张小涵, 等. 再生丝素蛋白水凝胶的制备与改性[J]. 江苏丝绸, 2019(6):22-30.
ZHANG Xuan, CHENG Yuan, ZHANG Xiaohan, et al. Preparation and modification of regenerated silk fibroin hydrogels[J]. Jiangsu Silk, 2019(6):22-30.
[13] 陈宏武, 王曙东. 蚕丝蛋白水凝胶的研究现状[J]. 纺织学报, 2015, 36(11):156-163.
CHEN Hongwu, WANG Shudong. Research progress of silk fibroin hydrogels[J]. Journal of Textile Research, 2015, 36(11):156-163.
[14] 周燕, 吴惠英. 再生丝素蛋白水凝胶的性质及应用[J]. 丝绸, 2016, 53(4):29-34.
ZHOU Yan, WU Huiying. Property and application of regenerated silk fibroin hydrogels[J]. Journal of Silk, 2016, 53(4):29-34.
[15] KAPOOR S, KUNDU S C. Silk protein-based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016, 31:17-32.
doi: 10.1016/j.actbio.2015.11.034
[16] YUCEL T, KOJIC N, LEISK Gary G, et al. Non-equilibrium silk fibroin adhesives[J]. Journal of Structural Biology, 2010, 170:406-412.
doi: 10.1016/j.jsb.2009.12.012
[17] FLOREN M L, SPILIMBERGO S, MOTTA A, et al. Carbon dioxide induced silk protein gelation for biomedical applications[J]. Biomacromolecules, 2012, 13(7):2060-2072.
doi: 10.1021/bm300450a
[18] ZHANG Qiang, HAN Guocong, LU Chen, et al. Facile preparation of mechanical reinforced and biocompatible silk gels[J]. Fibers and Polymers, 2019, 20:675-682.
doi: 10.1007/s12221-019-1046-7
[19] 陈大旗, 付华, 殷祝平, 等. 丝素蛋白取向水凝胶的研制[J]. 丝绸, 2017, 54(8):1-7.
CHEN Daqi, FU Hua, YIN Zhuping, et al. Preparation of orientational silk fibroin hydrogels[J]. Journal of Silk, 2017, 54(8):1-7.
[20] LIU Jiawei, DING Zhaozhao, LU Guozhong, et al. Amorphous silk fibroin nanofiber hydrogels with enhanced mechanical properties[J]. Macromolecular Bioscience, 2019, 19:1900326.
doi: 10.1002/mabi.201900326 pmid: 31738015
[21] 郭小兰, 左保齐. 丝素蛋白基复合水凝胶的研究进展[J]. 丝绸, 2020, 57(6):45-51.
GUO Xiaolan, ZUO Baoqi. Research progress of silk fibroin-based composite hydrogels[J]. Journal of Silk, 2020, 57(6):45-51.
[22] LI Zhao, ZHENG Zhaokun, YANG Yuhong, et al. Robust protein hydrogels from silkworm silk[J]. ACS Sustainable Chemistry & Engineering, 2016, 4:1500-1506.
[23] CHEN Feng, LU Shaoping, ZHU Lin. Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances[J]. Journal of Materials Chemistry B, 2019, 7(10):1708-1715.
doi: 10.1039/c8tb02445f pmid: 32254912
[24] 钟红荣, 方艳, 包红, 等. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020, 41(2):13-19.
ZHONG Hongrong, FANG Yan, BAO Hong, et al. Preparation and properties of silk fibroin based bilayer dressing materials[J]. Journal of Textile Research, 2020, 41(2):13-19.
[25] 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018, 39(4):69-76.
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J]. Journal of Textile Research, 2018, 39(4):69-76.
[26] PANG Liaoliao, MING Jinfa, PAN Fukui, et al. Fabrication of silk fibroin fluorescent nanofibers via electrospinning[J]. Polymers, 2019, 11:986.
doi: 10.3390/polym11060986
[27] 陈佳弘, 江虹锐, 余炼, 等. 丝素蛋白在氯化钙-乙醇-水体系中的溶解行为及其结构的变化[J]. 现代食品科技, 2017, 33(9):37-45.
CHEN Jiahong, JIANG Hongrui, YU Lian, et al. Dissolution behavior and structural changes of silk fibroin in calcium chloride-ethanol-water solvent systems[J]. Modern Food Science and Technology, 2017, 33(9):37-45.
[28] 何志朋. 环境诱导丝素蛋白构象转变的红外光谱及丝素蛋白复合膜的研究[D]. 苏州: 苏州大学, 2018: 10-20.
HE Zhipeng. Investigation on environmental-variation induced conformational transition of silk fibroin with FTIR and properties of silk fibroin blend film[D]. Suzhou: Soochow University, 2018: 10-20.
[29] NUMATA Keiji, KATASHIMA Takuya, SAKAI Takamasa. State of water, molecular structure, and cytotoxicity of silk hydrogels[J]. Biomacromolecules, 2011, 12(6):2137.
doi: 10.1021/bm200221u
[30] 王心如, 邹盛之, 冯文庆, 等. 乙醇诱导的柞蚕丝素蛋白多孔材料的研究[J]. 丝绸, 2018, 55(10):1-8.
WANG Xinru, ZOU Shengzhi, FENG Wenqing, et al. Studies on antheraea pernyi silk fibroin porous materials induced by ethanol[J]. Journal of Silk, 2018, 55(10):1-8.
[31] 王宗乾, 杨海伟, 周剑, 等. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(4):9-14.
WANG Zongqian, YANG Haiwei, ZHOU Jian, et al. Effect of urea degumming on mechanical properties of silk fibroin aerogels[J]. Journal of Textile Research, 2020, 41(4):9-14.
[32] LÓRENZ-FONFRIA V A, PADRÓS E. Curve-fitting of fourier manipulated spectra comprising apodization, smoothing, derivation and deconvolution[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60:2703-2710.
doi: 10.1016/j.saa.2004.01.008
[33] 刘明. FTIR对丝素蛋白构象的研究[D]. 杭州:浙江大学, 2006: 10-14.
LIU Ming. Study on the conformation of silk fibroin by FTIR[D]. Hangzhou: Zhejiang University, 2006: 10-14.
[34] JIN H, KAPLAN D L. Mechanism of silk processing in insects and spiders[J]. Nature, 2003, 424:1057-1061.
doi: 10.1038/nature01809
[35] MING Jinfa, LI Mengmeng, HAN Yuhui, et al. Novel two-step method to form silk fibroin fibrous hydro-gel[J]. Materials Science & Engineering C, 2016, 59:185-192.
[36] 徐梦洁, 张秀梅, 胡银春, 等. 双交联聚乙烯醇/海藻酸钠水凝胶的制备与表征[J]. 高分子材料科学与工程, 2020, 36(4):55-60,66.
XU Mengjie, ZHANG Xiumei, HU Yinchun, et al. Preparation and characterization of double crosslinked polyvinyl alcohol/sodium alginate hydrogels[J]. Polymer Materials Science & Engineering, 2020, 36(4):55-60,66.
[37] WAGN K, LI R, MA J H, et al. Extracting keratin from wool by using L-cysteine[J]. Green Chemistry, 2016, 18(2):476-481.
doi: 10.1039/C5GC01254F
[38] 闻荻江, 王辉, 朱新生, 等. 丝素蛋白的构象与结晶性[J]. 纺织学报, 2005, 26(1):110-112.
WEN Dijiang, WANG Hui, ZHU Xinsheng, et al. Conformation and crystallinity of silk fibroin[J]. Journal of Textile Research, 2005, 26(1):110-112.
[1] 孙钰晟, 左保齐. 高分子聚合物硬骨缺损修复材料研究进展[J]. 纺织学报, 2021, 42(08): 175-184.
[2] 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46-53.
[3] 郑森森, 郭涛, 董杰, 王士华, 张清华. 含咪唑结构高强高模聚酰亚胺纤维的制备及其结构与性能[J]. 纺织学报, 2021, 42(02): 7-11.
[4] 杨亚, 闫凤祎, 王卉, 张克勤. 丝素蛋白/磷酸八钙复合材料生物界面的蛋白质吸附和细胞响应[J]. 纺织学报, 2021, 42(02): 41-46.
[5] 盛明非, 王婉宁, 张丽平, 付少海. 可连续化生产的电刺激响应型液晶纤维制备及其性能[J]. 纺织学报, 2021, 42(02): 27-33.
[6] 宋广州, 涂芳芳, 丁梦瑶, 戴梦男, 殷音, 董凤林, 王建南. 丝素蛋白负电性增强改性及其对降钙素基因相关肽的加载能力[J]. 纺织学报, 2020, 41(12): 7-12.
[7] 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47.
[8] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[9] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[10] 孙广东, 黄益, 邵建中, FAN Qinguo. 光交联丝素蛋白水凝胶的蓝光引发体系[J]. 纺织学报, 2020, 41(04): 64-71.
[11] 朱维维, 蔡冲, 张聪, 龙家杰, 施楣梧. 超临界CO2处理温度对二醋酸纤维结构与性能的影响[J]. 纺织学报, 2020, 41(03): 8-14.
[12] 钟红荣, 方艳, 包红, 吴婷芳, 张小宁, 徐水, 朱勇. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020, 41(02): 13-19.
[13] 李思捷, 张彩丹. 聚天冬氨酸基纤维水凝胶的制备及其释药性能[J]. 纺织学报, 2020, 41(02): 20-25.
[14] 张晓会, 杨曈, 马丕波. 基于3D打印的竹节结构中空单丝制备及其压缩性能[J]. 纺织学报, 2019, 40(12): 32-38.
[15] 姜兆辉, 金梦甜, 郭增革, 贾曌, 王其才, 金剑. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!