纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 11-18.doi: 10.13475/j.fzxb.20220103808

• 纤维材料 • 上一篇    下一篇


张少月1,2, 岳江昱1,2, 杨家乐1,2, 柴晓帅1,2, 冯增国1,2, 张爱英1,2()   

  1. 1.北京理工大学 材料学院, 北京 100081
    2.北京理工大学 结构可控先进功能材料与绿色应用北京市重点实验室, 北京 100081
  • 收稿日期:2022-01-17 修回日期:2022-09-20 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 张爱英(1968—),女,副教授,博士。主要研究方向为功能高分子材料。E-mail:zhay@bit.edu.cn
  • 作者简介:张少月(1998—),女,硕士生。主要研究方向为静电纺复合相变纤维。
  • 基金资助:

Preparation and properties of eco-friendly polycaprolactone-based composite phase change fibrous membranes

ZHANG Shaoyue1,2, YUE Jiangyu1,2, YANG Jiale1,2, CHAI Xiaoshuai1,2, FENG Zengguo1,2, ZHANG Aiying1,2()   

  1. 1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
    2. Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
  • Received:2022-01-17 Revised:2022-09-20 Published:2023-03-15 Online:2023-04-14


为实现聚已内酯(PCL)环境友好高分子材料在相变储能领域的应用,以PCL为壳层支撑材料,聚乙二醇(PEG)为核层相变材料,羟基化多壁碳纳米管(MWCNTs-OH)作为导热增强材料分散至核层溶液中,采用同轴静电纺丝法制备了PCL/PEG/MWCNTs-OH复合相变纤维膜,并对其结构和性能进行分析。结果表明:复合相变纤维表面光滑,具有较为完善的核-壳结构;复合相变纤维膜呈现较高的断裂应力和断裂应变,添加质量分数为4%的MWCNTs-OH时复合相变纤维膜的断裂应力为7.43 MPa,断裂应变为132.2%;核层中MWCNTs-OH的加入,提高了复合相变纤维膜的导热性能和热稳定性,而其相变温度和焓值则无明显变化,相变温度在38.85~39.35 ℃之间,略高于人体的正常温度,在储能调温生物医用材料领域具有潜在的应用价值。

关键词: 聚已内酯, 聚乙二醇, 羟基化多壁碳纳米管, 同轴静电纺丝, 复合相变纤维膜, 相变材料


Objective Latent heat energy storage materials absorb and release the latent heat during phase change, which could provide a kind of efficient and clean energy storage method. Electrospun fibrous membranes have potential application prospects in various latent heat energy storage materials. However, challenges remain in the development of eco-friendly phase change materials (PCMs) with high thermal conductivity and no leakage. Hence, the study of efficient latent heat energy storage materials as green energy carrier has essential scientific significance and potential application prospects.

Method Polycaprolactone (PCL) has been widely used as a medical biodegradable material and drug release system because of its good biodegradability and biocompatibility. However, few studies of the PCM composite based on PCL matrix were carried out. In order to explore polycaprolactone (PCL) as a kind of eco-friendly polymer in the application of phase change energy storage fibers, this paper proposes a new type of composite phase change fibers consisting of PCL as sheaths, polyethylene glycol (PEG) and hydroxylated multiwall carbon nanotubes (MWCNTs-OH) as cores by coaxial electrospinning.

Results The obtained PCL/PEG/MWCNTs-OH phase change composite fibers have smooth surface and core-shell structure, and the introduction of MWCNTs-OH did not affect the core-sheath structure of the fiber (Fig.3), and the thermal conductivity of the fiber is greatly improved. When the mass fraction of MWCNTs-OH reaches 4%, the thermal conductivity of PCL/PEG/C4 fiber membrane increases to 0.121 8 W/(m·K) (Fig.4). Compared with PCL/PEG membrane without MWCNTs-OH, the thermal conductivity of PCL/PEG/C4 fiber membrane increases by 9.53%. Meanwhile, the thermal stability of PCL/PEG/MWCNTs-OH enhance remarkably because of the addition of MWCNTs-OH in the core layer. Moreover, the PCM composites display the desirable thermal reliability as well as the effective temperature regulation capacity. It is almost no change of latent heat for the PCL/PEG/C4 after 100 thermal cycles (Fig.7). It is clear that PCL sample presents much faster temperatare rise and decrease rates than PCL/PEG/C4 PCM composite (Fig.8). The thermal energy storage and release time of PCL/PEG /C4 are 33.3% and 48.8% longer than that of PCL, suggesting the existence of PEG in the PCM composite could realize the effective thermal energy regulation. Derived from the excellent mechanical properties of PCL and MWCNTs-OH, composite phase change fibrous membranes exhibit higher tensile strength and elongation at break, and the composite phase change fibrous membrane containing 4% MWCNTs-OH has a tensile strength of 7.43 MPa and elongation at break of 132.2%. Compared with PCL/PEG, the tensile strength and elongation at break of the composite phase change fibrous membranes with MWCNTs-OH are significantly improved, showing excellent mechanical properties that are conducive to its repeated use in practical applications.

Conclusion In summary, a series of PCL/PEG/MWCNTs-OH composite phase change fibrous membranes have been prepared by coaxial electrospun in this research, exhibiting perfect thermal conductivity and thermal stability by virtue of the addition of MWCNTs-OH. Since the components of composite phase change fiber are physically mixed, the phase change characteristics of PEG remain unchanged, and the melting temperatures of composite phase change fibrous membranes have no obvious change, ranging between 38.85 ℃ and 39.35 ℃, slightly higher than the normal temperature of human body. Therefore, the composite phase change fibrous membranes are promising for the biomedical materials with temperature regulation. The proposed method provides a new avenue for degradable phase change fibrous membrane to simultaneously achieve robust mechanical properties and leakage-free.

Key words: polycaprolactone, polyethylene glycol, hydroxylated multiwalled carbon nanotubes, coaxial electrospinning, composite phase change fibrous membrane, phase change material


  • TQ342.94















样品编号 熔融温度/
PCL/PEG 38.36 27.85 33.58 -23.13
PCL/PEG/C1 38.85 25.74 33.58 -19.91
PCL/PEG/C2 38.46 24.55 33.17 -19.38
PCL/PEG/C4 39.35 23.62 33.05 -18.73
39.75 22.63 33.70 -19.03







[1] LEONG K Y, RAHMAN M R A, GURUNATHAN B A. Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges[J]. Journal of Energy Storage, 2019, 21: 18-31.
doi: 10.1016/j.est.2018.11.008
[2] 蔡以兵, 孙桂岩, 刘盟盟, 等. 定形相变复合材料的研究进展:静电纺丝法[J]. 高分子通报, 2015(2): 18-25.
CAI Yibing, SUN Guiyan, LIU Mengmeng, et al. Research progress of formalized phase change composites:electrospinning method[J]. Polymer Bulletin, 2015(2): 18-25.
[3] LIU Z L, TANG B T, ZHANG S F. Novel network structural PEG/PAA/SiO2 composite phase change materials with strong shape stability for storing thermal energy[J]. Solar Energy Materials and Solar Cells, 2020. DOI: 10.1016/j.solmat.2020.110678.
doi: 10.1016/j.solmat.2020.110678
[4] GRAHAM M, SMITH J, BILTON M, et al. Highly stable energy capsules with nano-SiO2 pickering shell for thermal energy storage and release[J]. ACS Nano, 2020, 14 (7): 8894-8901.
doi: 10.1021/acsnano.0c03706
[5] 师奇松, 赵祎宁, 张鸣春, 等. 静电纺丝技术制备聚丙烯腈/铕-脂肪酸相变和发光双功能复合纳米纤维[J]. 高等学校化学学报, 2015, 36 (9): 1807-1812.
SHI Qisong, ZHAO Yining, ZHANG Mingchun, et al. Electrospinning fabrication of PAN/Eu-fatty acid phase change and luminescence bifunctional composite nanofibers[J]. Chemical Journal of Chinese Universities, 2015, 36 (9): 1807-1812.
[6] LU Y, XIAO X D, FU J, et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning[J]. Chemical Engineering Journal, 2019, 355: 532-539.
doi: 10.1016/j.cej.2018.08.189
[7] MCCANN J T, MARQUEZ M, XIA Y. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano Letters, 2006, 6 (12): 2868-2872.
pmid: 17163721
[8] NGUYEN T T T, LEE J G, PARK J S. Fabrication and characterization of coaxial electrospun polyethylene glycol/polyvinylidene fluoride (core/sheath) composite non-woven mats[J]. Macromolecular Research, 2011, 19 (4): 370-378.
doi: 10.1007/s13233-011-0409-8
[9] ZHANG L, ZHOU K C, WEI Q P, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J]. Applied Energy, 2019, 233: 208-219.
[10] LI A, DONG C, DONG W J, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance[J]. ACS Applied Materials & Interfaces, 2018, 10 (38): 32093-32101.
[11] XU B, ZHANG C X, CHEN C H, et al. One-step synthesis of CuS-decorated MWCNTs/paraffin composite phase change materials and their light-heat conversion performance[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133 (3): 1417-1428.
doi: 10.1007/s10973-018-7192-0
[12] FRIDRIKH S, YU J, BRENNER M, et al. Controlling the fiber diameter during electrospinning[J]. Physical Review Letters, 2003. DOI: 10.1103/PhysRevLett.90.144502.
doi: 10.1103/PhysRevLett.90.144502
[13] BABAPOOR A, KARIMI G. Thermal properties measurement and heat storage analysis of paraffin nanoparticles composites phase change material: Comparison and optimization[J]. Applied Thermal Engineering, 2015, 90: 945-951.
doi: 10.1016/j.applthermaleng.2015.07.083
[14] SANADA K, TADA Y, SHINDO Y. Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40 (6): 724-730.
doi: 10.1016/j.compositesa.2009.02.024
[15] 张国兵, 王曙东, 何远方, 等. 聚酰胺6/聚乙二醇相变调温纳米纤维的结构与性能[J]. 纺织学报, 2014, 35 (7): 30-35.
ZHANG Guobing, WANG Shudong, HE Yuanfang, et al. Structure and properties of polyamide 6/polyethylene glycol phase transition temperature-regulated nanofibers[J]. Journal of Textile Research, 2014, 35 (7): 30-35.
[16] 柯惠珍, 蔡以兵, 魏取福, 等. 静电纺PA-SA/PET/MWNTs复合相变纤维膜的制备及储热性能研究[J]. 化工新型材料, 2012, 40 (8): 23-25, 31.
KE Huizhen, CAI Yibing, WEI Qufu, et al. Preparation and heat storage of PA-SA/PET/MWNTs composite phase change fiber membrane by electrostatic spinning[J]. New Chemical Materials, 2012, 40 (8): 23-25,31.
[17] 柯惠珍, 李永贵. 癸酸-棕榈酸-硬脂酸/聚丙烯腈/氮化硼复合相变纤维膜的传热性能[J]. 纺织学报, 2019, 40(3): 26-31.
KE Huizhen, LI Yonggui. Heat transfer properties of capric-palmitic acid-stearic acid/polyacrylonitrile/boron nitride composite phase change fiber membrane[J]. Journal of Textile Research, 2019, 40(3): 26-31.
[18] MA K L, ZHANG X L, JI J, et al. Application and research progress of phase change materials in biomedical field[J]. Biomaterials Science, 2021, 9(17): 5762-5780.
doi: 10.1039/d1bm00719j pmid: 34351340
[19] VIANNIE L R, BANAPURMATH N R, SOUDAGAR M E M, et al. Electrical and mechanical properties of flexible multiwalled carbon nanotube/poly(dimethylsiloxane) based nanocomposite sheets[J]. Journal of Environmental Chemical Engineering, 2021. DOI: 10.1016/j.jece.2021.106550.
doi: 10.1016/j.jece.2021.106550
[20] LIU X, XU S X, KUANG X L, et al. Ultra-long MWCNTs highly oriented in electrospun PVDF/MWCNT composite nanofibers with enhanced β phase[J]. RSC Advances, 2016, 6 (108): 106690-106696.
doi: 10.1039/C6RA24195F
[1] 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10.
[2] 胡宝继, 张巧玲, 王旭. 聚乙二醇改性热塑性环氧树脂及其可纺性[J]. 纺织学报, 2023, 44(02): 63-68.
[3] 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(04): 194-202.
[4] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[5] 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187-194.
[6] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[7] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[8] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[9] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
[10] 李思捷, 张彩丹. 聚天冬氨酸基纤维水凝胶的制备及其释药性能[J]. 纺织学报, 2020, 41(02): 20-25.
[11] 李树锋, 程博闻, 罗永莎, 王辉, 徐经伟. 聚丙烯腈基活性中空碳纳米纤维制备及其性能[J]. 纺织学报, 2019, 40(10): 1-6.
[12] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[13] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
[14] 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34.
[15] 萧传敏, 肖长发, 张泰, 王新亚. 编织管增强型聚乳酸中空纤维膜结构及其性能[J]. 纺织学报, 2019, 40(08): 20-26.
Full text



No Suggested Reading articles found!