纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 187-194.doi: 10.13475/j.fzxb.20200800108

• 综合述评 • 上一篇    下一篇

气凝胶材料在消防服中的应用研究进展

蒋璐璐1, 邓梦1, 王云仪1,2, 李俊1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2020-08-03 修回日期:2021-04-29 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 李俊
  • 作者简介:蒋璐璐(1997—),女,硕士生。主要研究方向为服装舒适性与功能防护服装。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2232021G-08)

Research progress on application of aerogel materials in firefighting clothing

JIANG Lulu1, DENG Meng1, WANG Yunyi1,2, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design & Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-08-03 Revised:2021-04-29 Published:2021-09-15 Online:2021-09-27
  • Contact: LI Jun

摘要:

为了促进气凝胶材料在消防服领域的应用,提升消防服的综合服用性能,从而推动新型消防服的开发,评估了近年来气凝胶材料应用于消防服的优缺点。分析了气凝胶材料的热学性能,包括隔热性能和热稳定性;从作为涂层材料和直接嵌入多层织物系统2个方面,综述了其在消防服中的应用及研究现状,分析了气凝胶型消防服热防护性能和热湿舒适性能的优劣。最后归纳了气凝胶材料在应用过程中存在的问题,并展望了其未来的应用方向,指出热防护与热舒适的平衡、气凝胶力学性能和热稳定性的提升、气凝胶复合材料的开发与应用有望成为今后的研究趋势。

关键词: 气凝胶, 消防服, 热学性能, 玄武岩纤维, 相变材料

Abstract:

In order to pursue the application of aerogel materials in the field of firefighting clothing, improve the comprehensive wearability of firefighting clothing, and promote the development of new types of firefighting clothing, advantages and disadvantages of using aerogel materials in firefighting clothing were evaluated based on research findings reported in recent years. The thermal properties of aerogel materials were discussed, including thermal insulation performance and thermal stability. The literatures were reviewed from two aspects, i.e. aerogel used as coating materials and that directly embedded in multi-layer fabric systems. The application and research status of the firefighting clothing were summarized, and the thermal protection performance and comfort performance of thermal and moisture of aerogel-type firefighting clothing were also analyzed. The problems in the application process of aerogel materials are categorised, and the future application direction of the aerogel materials forecasted. Balance between thermal protection and thermal comfort, the improvement of aerogel mechanical properties and thermal stability, and the development and application of aerogel composites are forecasted as the research directions in the future.

Key words: aerogel, firefighting protective clothing, thermal property, basalt fiber, phase change material

中图分类号: 

  • TS941.73
[1] 翟胜男, 陈太球, 蒋春燕, 等. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(8):100-104.
ZHAI Shengnan, CHEN Taiqiu, JIANG Chunyan et al. Comprehensive evaluation on thermal protection and comfort of outer fabrics of firefighter protective clothing[J]. Journal of Textile Research, 2018, 39(8):100-104.
[2] 高珊, 卢业虎, 王来力, 等. 气凝胶在防护服中的应用进展[J]. 丝绸, 2019, 56(4):44-49.
GAO Shan, LU Yehu, WANG Laili, et al. Application progress of aerogel in protective clothing[J]. Journal of Silk, 2019, 56(4):44-49.
[3] 张兴娟, 孔祥明, 杨春信. 气凝胶消防服概念研究[J]. 中国个体防护装备, 2011(3):15-17.
ZHANG Xingjuan, KONG Xiangming, YANG Chunxin. Study on the concept of the aerogel-based fire protective clothing[J]. Chinese Personal Protective Equipment, 2011(3):15-17.
[4] JIN L, HONG K, YOON K. Effect of aerogel on thermal protective performance of firefighter clothing[J]. Journal of Fiber Bioengineering and Informatics, 2013, 6(3):315-324.
doi: 10.3993/jfbi
[5] 胡银. 气凝胶运用于消防服隔热性能测试及合成研究[D]. 合肥: 中国科学技术大学, 2014:13-29.
HU Yin. Synthesis and heat insulation test of aerogel using in firefighters' protective clothing[D]. Hefei: University of Science and Technology of China, 2014: 13-29.
[6] HUANG D, GUO C. Thermal protective performance of silica aerogel felt bedded firefighters' protective clothing under fire conditions[J]. Material Science, 2017, 23(4):335-341.
[7] ZHANG H, SONG G, SU H, et al. An exploration of enhancing thermal protective clothing performance by incorporating aerogel and phase change materials[J]. Fire and Materials, 2017, 41(8):953-963.
doi: 10.1002/fam.v41.8
[8] SHAID A, WANG L, FERGUSSON S M, et al. Effect of aerogel incorporation in PCM-containing thermal liner of firefighting garment[J]. Clothing and Textiles Research Journal, 2018, 36(3):151-164.
doi: 10.1177/0887302X18755464
[9] 李建明, 王彩霞, 赵晓明, 等. 涂层织物热防护性能研究[J]. 纺织科学与工程学报, 2019, 36(3):1-7, 27.
LI Jianming, WANG Caixia, ZHAO Xiaoming, et al. Study on thermal protective performance of coated fabric[J]. Journal of Textile Science and Engineering, 2019, 36(3):1-7, 27.
[10] 刘洪丽, 李洪彦. 新型硅基气凝胶复合材料[M]. 北京: 化学工业出版社, 2017: 2.
LIU Hongli, LI Hongyan. New silicon-based aerogel composite materials[M]. Beijing: Chemical Industry Press, 2017: 2.
[11] XIONG X, YANG T, MISHRA R, et al. Transport properties of aerogel-based nanofibrous nonwoven fabrics[J]. Fibers and Polymers, 2016, 17(10):1709-1714.
doi: 10.1007/s12221-016-6745-8
[12] 邓忠生, 魏建东, 王珏, 等. SiO2气凝胶结构及其热学特性研究[J]. 材料工程, 1999(12):23-25.
DENG Zhongsheng, WEI Jiandong, WANG Jue, et al. Structure and thermal properties of SiO2 aerogels[J]. Materials Engineering, 1999(12):23-25.
[13] 刘长奇, 腾雪峰, 石多奇, 等. 气凝胶纳米复合材料隔热机理及其热导率计算[C]// 中国航天第三专业信息网第三十九届技术交流会暨第三届空天动力联合会议论文集. 洛阳:中国航天第三专业信息网, 2018: 1-10.
LIU Changqi, TENG Xuefeng, SHI Duoqi, et al. Thermal insulation mechanism and thermal conductivity calculation of aerogel nanocomposite[C]// Proceedings of the 39th Technical Exchange Conference of China Aerospace Third Professional Information Network and the 3rd Joint Conference on Aerospace Power. Luoyang: China Aerospace Third Professional Information Network, 2018: 1-10.
[14] 刘鹤, 李增耀, 胡子君, 等. 气凝胶单元体模型结构参数与等效热导率研究[J]. 工程热物理学报, 2012, 33(6):1039-1042.
LIU He, LI Zengyao, HU Zijun, et al. Relationship between structure and effective thermal conductivity of silica aerogel unit cell model[J]. Journal of Engineering Thermophysics, 2012, 33(6):1039-1042.
[15] 赵俊杰, 于海童, 段远源, 等. 基于微观结构的气凝胶热导率分析[J]. 工程热物理学报, 2013, 34(10):1926-1930.
ZHAO Junjie, YU Haitong, DUAN Yuanyuan, et al. Analysis of aerogel thermal conductivity based on the microstructure[J]. Journal of Engineering Thermophysics, 2013, 34(10):1926-1930.
[16] 毕成, 唐桂华. 多孔材料气凝胶气固耦合传热研究[J]. 工程热物理学报, 2015, 36(6):1315-1320.
BI Cheng, TANG Guihua. Study of coupling heat transfer between solid and gas phases in nanoporous aerogel[J]. Journal of Engineering Thermophysics, 2015, 36(6):1315-1320.
[17] 魏高升, 张欣欣, 于帆. 超级绝热材料气凝胶的纳米孔结构与有效导热系数[J]. 热科学与技术, 2005, 4(2):107-112.
WEI Gaosheng, ZHANG Xinxin, YU Fan. Nano-porous structures and effective thermal conductivity of aerogel super insulator[J]. Journal of Thermal Science and Technology, 2005, 4(2):107-112.
[18] 张欣欣, 乐恺, 刘育松, 等. 二氧化硅气凝胶的等效热导率理论[J]. 宇航材料工艺, 2010, 40(2):15-19, 23.
ZHANG Xinxin, LE Kai, LIU Yusong, et al. Theoretical research on effective thermal conductivity of silica aerogel[J]. Aerospace Materials & Technology, 2010, 40(2):15-19, 23.
[19] 段远源, 林杰, 王晓东, 等. 二氧化硅气凝胶的气相热导率模型分析[J]. 化工学报, 2012, 63(S1):54-58.
DUAN Yuanyuan, LIN Jie, WANG Xiaodong, et al. Analysis of gaseous thermal conductivity models for silica aerogels[J]. CIESC Journal, 2012, 63(S1):54-58.
[20] 冯晶晶, 赵晓明, 郑振荣. SiO2气凝胶在热防护纺织品中的应用[J]. 纺织科学与工程学报, 2018, 35(2):113-117.
FENG Jingjing, ZHAO Xiaoming, ZHENG Zhenrong. Application of SiO2 aerogels in thermal protective textiles[J]. Journal of Textile Science and Engineering, 2018, 35(2):113-117.
[21] 张驰, 阚安康, 孟闯, 等. 气凝胶隔热复合材料研究进展[J]. 制冷技术, 2016, 36(4):61-67.
ZHANG Chi, KAN Ankang, MENG Chuang, et al. Research status of insulative aerogel composite material[J]. Chinese Journal of Refrigeration Technology, 2016, 36(4):61-67.
[22] 张明明. 二氧化硅气凝胶的制备与应用[D]. 北京:北京化工大学, 2015: 27-35.
ZHANG Mingming. The preparation of silica aerogel and its application[D]. Beijing: Beijing University of Chemical Technology, 2015: 27-35.
[23] 杨海龙, 吴文军, 徐云辉, 等. 气凝胶:高超声速飞行器未来的“防火服”[J]. 科技传播, 2016, 8(19):196-198.
YANG Hailong, WU Wenjun, XU Yunhui, et al. Aerogel: the future "fire protection suit" of hypersonic aircraft[J]. Science & Technology Communication, 2016, 8(19):196-198.
[24] 刘国熠, 刘元军, 赵晓明. SiO2气凝胶含量对单层涂层柔性复合材料热防护性能的影响[J]. 纺织科学与工程学报, 2019, 36(1):102-105.
LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. Influence of SiO2 aerogel content on the thermal protection performance of single-layer coating flexible composites[J]. Journal of Textile Science and Engineering, 2019, 36(1):102-105.
[25] HUANG D, GUO C, ZHANG M, et al. Characteristics of nanoporous silica aerogel under high temperature from 950 ℃ to 1200 ℃[J]. Materials & Design, 2017, 129:82-90.
[26] KRZEMIŃSKA S, GRESZTA A, RÓ$\grave{z}$AŃSKI A, et al. Effects of heat exposure on the properties and structure of aerogels for protective clothing applications[J]. Microporous and Mesoporous Materials, 2019, 285:43-55.
doi: 10.1016/j.micromeso.2019.04.052
[27] YANG X, SUN Y, SHI D, et al. Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite[J]. Materials Science and Engineering: A, 2011, 528(13/14):4830-4836.
doi: 10.1016/j.msea.2011.03.013
[28] ROSA-FOX N D L, GAGO-DUPORT L, ESQUIVIAS L. Aggregation process in silica aerogels on sintering[J]. Journal of Non-Crystalline Solids, 1995, 192/193(9):534-538.
doi: 10.1016/0022-3093(95)00479-3
[29] 李雄威, 段远源, 王晓东. SiO2气凝胶高温结构变化及其对隔热性能的影响[J]. 热科学与技术, 2011, 10(3):189-193.
LI Xiongwei, DUAN Yuanyuan, WANG Xiaodong. Impacts of structural changes of SiO2 aerogel under high temperature on its insulation performance[J]. Journal of Thermal Science and Technology, 2011, 10(3):189-193.
[30] 毕海江. 二氧化硅气凝胶隔热材料制备及其隔热性能研究[D]. 合肥: 中国科学技术大学, 2014: 34-38.
BI Haijiang. Preparation of insulation materials of silica aerogels and research of thermal insulation properties[D]. Hefei: University of Science and Technology of China, 2014: 34-38.
[31] 贺香梅, 徐壁, 蔡再生. SiO2气凝胶隔热涂层织物的制备及性能研究[J]. 表面技术, 2014, 43(3):95-100.
HE Xiangmei, XU Bi, CAI Zaisheng. Preparation of silica aerogel coated fabric and studies of its performance[J]. Surface Technology, 2014, 43(3):95-100.
[32] BHUIYAN M A R, WANG L, SHAID A, et al. Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection[J]. Progress in Organic Coatings, 2019, 131:100-110.
doi: 10.1016/j.porgcoat.2019.01.041
[33] 王昕, 黄胶, 郑振荣. TiO2/SiO2气凝胶隔热涂层帐篷材料的制备[J]. 印染, 2020, 46(1):52-55, 59.
WANG Xin, HUANG Jiao, ZHENG Zhenrong. Preparation of TiO2/SiO2 aerogel thermal insulation coating tent material[J]. China Dyeing & Finishing, 2020, 46(1):52-55, 59.
[34] 刘越, 宋洁. SiO2气凝胶在非织造布加工中的应用[J]. 产业用纺织品, 2009, 27(3):40-42, 39.
LIU Yue, SONG Jie. The application of nano-SiO2 aerogel in nonwovens finishing[J]. Technical Textiles, 2009, 27(3):40-42, 39.
[35] 许鲁, 王虹, 颜肇基, 等. SiO2气凝胶混杂芳纶非织布的性能研究[J]. 现代纺织技术, 2018, 26(1):22-25.
XU Lu, WANG Hong, YAN Zhaoji, et al. Performance study of SiO2 aerogel hybrid aramid nonwoven fabric[J]. Advanced Textile Technology, 2018, 26(1):22-25.
[36] 王璐, 丁笑君, 夏馨, 等. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10):79-84.
WANG Lu, DING Xiaojun, XIA Xin, et al. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric[J]. Journal of Textile Research, 2019, 40(10):79-84.
[37] 刘国熠. 消防避火服用柔性复合材料的热防护性能研究[D]. 天津: 天津工业大学, 2018: 58-86.
LIU Guoyi. Research on the thermal protection performance of flexible composite materials for fire protection and fire protection[D]. Tianjin: Tiangong University, 2018: 58-86.
[38] SHAID A, FURGUSSON M, WANG L. Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter's protective clothing[J]. Chemical and Materials Engineering, 2014, 2(2):37-43.
doi: 10.13189/cme.2014.020203
[39] QI Z, HUANG D, HE S, et al. Thermal protective performance of aerogel embedded firefighter's protective clothing[J]. Journal of Engineered Fibers and Fabrics, 2013, 8(2):134-139.
[40] 张兴娟, 吴洪飞, 孔祥明. 新型组合式消防服热防护性能分析[J]. 中国个体防护装备, 2013(6):20-24.
ZHANG Xingjuan, WU Hongfei, KONG Xiangming. Analysis of thermal protective performance of aerogel-based new combined firefighters' clothing[J]. Chinese Personal Protective Equipment, 2013(6):20-24.
[41] CHAKRABORTY S, RAO A V, KOTHARI V K, et al. Radiant heat protective performance of clothing assemblies with flexible aerogel-nomex nonwoven composite as thermal insulation[J]. Indian Journal of Fibre & Textile Research, 2019, 44(4):396-403.
[42] 杨蕊. 新型消防灭火护服的开发及其性能研究[D]. 天津: 天津工业大学, 2016: 29-30.
YANG Rui. Development and performance research of new fire-fighting fire protective clothing[D]. Tianjin: Tiangong University, 2016: 29-30.
[43] NAEEM J, MAZARI A, KUS Z, et al. Comparative study of radiant heat flux density transmission through firefighter protective clothing[J]. Fibres and Textiles, 2018(2):79-86.
[44] 任乾乾, 林兰天, 郑慧琴. 采用二氧化硅气凝胶的防火隔热组合面料研究[J]. 上海纺织科技, 2011, 39(12):53-55.
REN Qianqian, LIN Lantian, ZHENG Huiqin. Research on fireproof and insulation composite fabric by use of silica aerogels[J]. Shanghai Textile Science & Technology, 2011, 39(12):53-55.
[45] 郑慧琴. 应用形状记忆合金的防火隔热组合面料研究[D]. 上海: 上海工程技术大学, 2011: 40-44.
ZHENG Huiqin. Research on fireproof and heat-insulation composite fabrics with shape memory alloy[D]. Shanghai: Shanghai University of Engineering Science, 2011: 40-44.
[46] SHAID A, WANG L, PADHYE R. The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment[J]. Journal of Industrial Textiles, 2015, 45(4):611-625.
doi: 10.1177/1528083715610296
[47] 张慧. 基于气凝胶的高性能热防护纺织新材料的研究[D]. 天津: 天津工业大学, 2017: 61-97.
ZHANG Hui. Research on high-performance thermal protective new textile materials based on aerogel[D]. Tianjin: Tiangong University, 2017: 61-97.
[48] PAUSE B. Nonwoven protective garments with thermo-regulating properties[J]. Journal of Industrial Textiles, 2003, 33:93-99.
doi: 10.1177/152808303038859
[49] SHAID A, WANG L, PADHYE R, et al. Aerogel nonwoven as reinforcement and batting material for firefighter's protective clothing: a comparative study[J]. Journal of Sol-Gel Science and Technology, 2018, 87(1):95-104.
doi: 10.1007/s10971-018-4689-8
[50] VENKATARAMAN M, MISHRA R, MILITKY J, et al. Aerogel based nanoporous fibrous materials for thermal insulation[J]. Fibers and Polymers, 2014, 15(7):1444-1449.
doi: 10.1007/s12221-014-1444-9
[51] 高文杰, 杨自春, 李昆锋, 等. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4):714-718.
GAO Wenjie, YANG Zichun, LI Kunfeng, et al. Preparation and characterization of polyimide fiber reinforced silica aerogel[J]. Materials Reports, 2019, 33(4):714-718.
[52] 肖芸芸, 李良军, 冯军宗, 等. 纤维增强聚苯并噁嗪-SiO2气凝胶复合材料阻燃隔热性能[J]. 南京工业大学学报(自然科学版), 2020, 42(4):452-460.
XIAO Yunyun, LI Liangjun, FENG Junzong, et al. Flame retardant and thermal insulation properties of polybenzoxazine-silicon aerogel composites with reinforced fiber[J]. Journal of Nanjing University(Natural Science Edition), 2020, 42(4):452-460.
[53] 高珊. 石墨烯气凝胶复合防护面料制备及热防护性与舒适性研究[D]. 苏州:苏州大学, 2020: 16-29.
GAO Shan. Development of composite protective fabrics based on graphene aerogel and its thermal protective and comfort properties[D]. Suzhou: Soochow University, 2020: 16-29.
[54] 高珊, 卢业虎, 张德锁, 等. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(4):117-122.
GAO Shan, LU Yehu, ZHANG Desuo, et al. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel[J]. Journal of Textile Research, 2020, 41(4):117-122.
[55] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11):116-121.
MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel[J]. Journal of Textile Research, 2020, 41(11):116-121.
[56] JIANG Y, ZHANG L, XU H, et al. Preparation and characterization of thermal protective aluminum hydroxide aerogel/psa fabric composites[J]. Journal of Sol-Gel Science and Technology, 2017, 82(2):370-379.
doi: 10.1007/s10971-017-4323-1
[57] 任洪雨, 刘沙, 陈维旺, 等. 双面格栅气凝胶隔热毡的研制及热防护性能[J]. 消防科学与技术, 2020, 39(9):1274-1277.
REN Hongyu, LIU Sha, CHEN Weiwang, et al. Development of double-sided grille aerogel thermal insulation felt and study on its thermal protective properties[J]. Fire Science and Technology, 2020, 39(9):1274-1277.
[58] 鲁义, 杨帆, 施式亮, 等. 火焰环境下隔热内衬气凝胶球粒的耐热特性[J]. 中国安全科学学报, 2020, 30(5):48-53.
LU Yi, YANG Fan, SHI Shiliang, et al. Heat resistance characteristics of aerogel spherules for thermal insulation lining in flame environment[J]. China Safety Science Journal, 2020, 30(5):48-53.
[59] 杨帆, 鲁义, 刘艺伦, 等. 消防服充填用弹性气凝胶球粒的力学性能[J]. 中国安全科学学报, 2020, 30(7):180-185.
YANG Fan, LU Yi, LIU Yilun, et al. M Mechanical properties of elastic aerogel spherules for fire-fighting clothes filling[J]. China Safety Science Journal, 2020, 30(7):180-185.
[60] 杨西红. 气凝胶复合聚氨酯泡沫材料[C]// 中国聚氨酯工业协会第19次年会论文集. 上海:中国聚氨酯工业协会, 2018: 108-110.
YANG Xihong. Aerogel composite polyurethane foam[C]// Proceedings of the 19th Annual Meeting of China Polyurethane Industry Association. Shanghai: China Polyurethane Industry Association, 2018: 108-110.
[1] 于志财, 刘金如, 何华玲, 马胜男, 姜会钰. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(09): 180-186.
[2] 王小波, 钱晓明, 王立晶, 刘永胜, 白赫. 液体冷却服研究进展及消防应用可行性研究[J]. 纺织学报, 2021, 42(06): 198-207.
[3] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155.
[4] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[5] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[6] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[7] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[8] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[9] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[10] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[11] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
[12] 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38.
[13] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[14] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[15] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!