基于接触起电效应的新型机电转化纤维性能提升策略
Strategies for enhancing performance of novel mechano-electric conversion fibers based on contact electrification effect
通讯作者:
收稿日期: 2025-01-6 修回日期: 2025-02-5
| 基金资助: |
|
Received: 2025-01-6 Revised: 2025-02-5
作者简介 About authors
陈枭(1998—),女,硕士。主要研究方向为摩擦纳米发电机材料改性。
机电转化纤维(MECFs)是一类将新兴的接触或摩擦起电技术与传统的可穿戴纤维或纺织材料相结合,具有突出的自主式供电或自驱动传感功能的新型智能纤维材料。然而,MECFs的大面积制备和规模化应用受到其能量转化效率低和输出功率密度低等性能瓶颈的限制。为充分挖掘MECFs的性能潜力并发挥其在面向人体可穿戴应用中的优势,详细探讨了MECFs的电输出性能提升策略,包括材料选择与改性、结构设计、能量管理与优化;其中,聚合物材料本征性质是主导MECFs机电转化性能的关键因素之一,可以从化学、物理角度进行改性处理;MECFs的多维纤维或织物结构设计能够增加起电材料之间的有效接触面积,从而能够提升界面电荷转移量。同时,为满足人体表面长周期、可持续稳定供能需求,需对纤维进行低功耗、微型化能量管理,将MECFs的高压低流、高阻抗的交流输出形式转变为可穿戴电子设备所需要的稳压稳流、阻抗匹配的直流需求形式。最后,简要总结MECFs在自供能可穿戴传感技术中的应用并展望了其未来发展的趋势。MECFs的研究与应用目前正处于快速发展阶段,未来需结合材料改性、结构优化和能量管理等策略,推动其向高性能可穿戴供能或传感设备迈进。
关键词:
Significance Mechano-electric conversion fibers (MECFs) represent a development in smart fiber materials, merging the novel field of triboelectric technologies with conventional wearable fibers and textiles. This integration enhances the functionality of autonomous power supply for wearable electronics. The significance of MECFs also lies in their potential to revolutionize smart sensing, including healthcare, sports, and personal electronics, by providing a sustainable self-powered sensing signals. However, the realization of MECF's potential faces challenges such as low energy conversion efficiency and output power density. Addressing these limitations is crucial for unlocking MECF's capabilities in energy supplements and human-body wearable applications, where reliable and continuous power supply is essential for the effective operation of sensors and other electronic devices. This research underscores the importance of enhancing electrical output performance through innovative material selection, structural design, and energy management strategies, paving the way for more efficient and versatile wearable devices.
Progress Recent advancements in MECFs have made significant strides towards overcoming the inherent limitations of these materials, particularly focusing on improving their mechanical-electric conversion performance. A key area of progress involves the selection and modification of polymer materials, whose intrinsic properties are pivotal in determining MECF's overall efficiency. By applying chemical and physical modifications, researchers have been able to adjust or enhance the material components, surface characteristics and conductivity of polymers, thereby increasing their ability to generate electricity from mechanical movements. Another critical development has been the introduction of multidimensional fiber or fabric structures designed to maximize the effective contact area between electrification materials. These designs not only increase the amount of interfacial charge transfer but also improve the durability and flexibility of MECFs, making them more suitable for integration into wearable devices. Furthermore, addressing the need for long-term, sustainable power supply on human surfaces, advanced power management systems is also essential. These systems convert the MECF's high-voltage, low-current alternating current (AC) output typical into a regulated direct current (DC) form, ensuring compatibility with wearable electronics while minimizing energy loss. Such innovations have demonstrated the feasibility of MECFs in self-powered wearable sensing technologies, highlighting their potential for broader applications and marking a significant advancement in the field.
Conclusion and Prospect The culmination of current research efforts indicates substantial progress in enhancing the performance of MECFs, yet challenges remain regarding their practical application and scalability. Material research should focus on developing new polymers through surface grafting, component doping, and microstructure design to achieve higher charge density and stable output performance while maintaining flexibility and comfort for long-term wear. Structural optimization has shown that three-dimensional (3-D) MECFs hold greater potential than traditional two-dimensional (2-D) fabrics by virtut of increased contact area, improved charge transfer efficiency, stability, and protective capabilities, which are crucial for high-performance applications. Additionally, bio-inspired designs, multifunctional integration, and personalized customization via 3D printing can enhance the versatility and user experience of MECFs. Intelligent voltage regulation systems capable of dynamically adjusting to input voltage and current changes will further optimize MECFs performance. Looking forward, MECF's application in healthcare monitoring, human-machine interaction, and smart homes showcases their immense potential when combined with IoT and AI technologies. Overall, future developments in material innovation, structural optimization, and power management are set to propel MECFs towards smarter, more flexible solutions, offering enhanced convenience and efficiency in wearable energy and sensing technologies.
Keywords:
本文引用格式
陈枭, 赵继忠, 董凯.
CHEN Xiao, ZHAO Jizhong, DONG Kai.
生活中常见的聚合物纤维材料呈电中性和弱介电特性,基于此制备的纤维基TENG能量转化效率和电荷输出密度相对较低,难以满足实际供电和自供电传感的要求[5-6],因此提高纤维基TENGs的性能输出迫在眉睫。然而,要实现MECFs在实际应用中的高性能和耐久性,MECFs的性能提升策略可以从材料选择、结构设计和电源管理3个方面进行优化[7-8]。在材料层面,基于接触起电机制选择具有高摩擦电负性或正性的材料是提高MECFs性能的关键。例如,聚二甲基硅氧烷(PDMS)[9]、聚四氟乙烯(PTFE)[10]和锦纶等材料因其卓越的摩擦电特性而成为研究的热点。另外,通过纳米纤维化和表面改性技术,可进一步提高材料的摩擦电性能和耐久性。通过静电纺丝技术制备的纳米纤维具有更大的比表面积和更好的透气性,从而提高了MECFs的舒适性和电输出性能[11-12]。在结构设计上,通过优化纤维的形状和排列,可以显著提升MECFs的性能,即通过编织、针织或缠绕等纺织工艺,制造出具有不同功能的三维结构,从而提高能量收集效率和机械稳定性[13-14]。经由精心设计的纤维表面,引入微纳米级别的粗糙度和图案,能够显著扩大接触面积并大幅提升电荷转移的效率。这些结构设计不仅提高了MECFs的性能,还增加了其在不同应用环境中的适应性。电源管理是确保MECFs具有高效能量转化和持续稳定供电能力的另一个关键因素。由于MECFs的电学输出存在高压低流、交流脉冲式等特征,因此需要有效的电源管理电路(PMCs)来整流、储存和稳定输出。研究者们正在开发新型PMCs,如自充电电路和能量存储单元,以提高能量转化效率和输出稳定性。此外,通过集成能量存储设备(如超级电容器),可实现能量的有效储存和释放,从而为可穿戴设备提供持续稳定的电源[15-16]。
总之,MECFs作为新兴可穿戴能源技术,其性能提升策略涉及材料创新、结构设计和电源管理与优化等多个方面,MECFs也有望在未来的智能纺织品和可穿戴电子设备领域扮演更加关键的角色,为人类提供新颖的能源解决方案。
1 材料选择与改性
MECFs的工作原理是基于2种物理现象的协同:接触起电和静电感应。接触起电是一种普遍现象,当2种不同材料相互接触或发生机械滑动时,它们彼此之间就会带上相反的电荷。因此,材料自身性质对于MECFs的机电转化性能至关重要。材料间接触起电的强弱可以归纳为摩擦起电序列[17-18],即根据失去或获得电子的倾向性对各种材料进行归类。当与摩擦起电序列底部负电性的材料摩擦时,摩擦起电序列顶部正电性的材料将失去电子并带正电,而摩擦起电序列底部的负电性材料将接收电子并带负电。2种材料之间的距离越远,电子转移的趋势越大。除此之外,接触层摩擦因数也会影响MECFs的电输出[19,20]。MECF作为自供电可穿戴智能纺织品,需考虑其透气性、舒适性、生物相容性等特点,可供选择的材料一般聚集于高分子聚合物材料和天然生物相容材料2大类别。由于高分子聚合物材料具有较强的电负性,常被用于MECF的负电性材料除了PDMS和PTFE外还有聚偏二氟乙烯(PVDF)、聚酰亚胺(PI)和氟乙烯丙烯共聚物(FEP)等。天然材料主要有以纤维素为主要成分的棉、麻等和以蛋白质为主要成分的丝、毛等生物相容、可再生、可持续性和环境友好材料,但其较低的电荷密度和电中性限制了其起电性能。为让材料既能保持高分子聚合物的高输出性能又能拥有天然织物独特的特性,需对目前的可穿戴智能纺织材料进行改性处理,通过化学改性、物理改性等方法来增加织物摩擦层的摩擦极性,从而增大织物的电性能输出。
1.1 化学改性
化学改性通过化学反应在纤维表面引入新的官能团或聚合物层,以改变其表面性质。纤维的低结晶度和低表面密度,限制了电荷转移密度,导致输出性能不高,因此通过化学改性在织物表面引入分层形貌和高摩擦活性,提高织物的电荷转移能力和机电转化能力十分必要。Nie等[21]通过接枝三乙氧基-1H,1H,2H,2H-十三氟辛基硅烷(PFOTES)来修饰纤维素纳米纤丝(CNF)表面,其电输出性能相比未改性时提高了2倍。Roy等[22]通过“硫-烯”反应将大蒜素接枝到CNF上,显著提高了CNF膜的电输出性能,改性后的TENG的峰值开路电压和短路电流分别达到7.9 V和5.13 μA,可达到原始纤维素基TENG的6.5倍。Vu等[23]通过在PVDF表面处理硅纳米颗粒(Si NPs),并接枝负电荷的全氟辛基三乙氧基硅烷(FOTS)形成FOTS/Si NPs/PVDF膜即FSiP膜。处理后的FSiP显示出卓越的摩擦电性能,短路电流为5.79 μA,开路电压为28.3 V,最高功率密度为420 mW/m2,是PVDF-TENG的10.8倍。通过化学改性显著提升MECF性能,还可以通过官能团修饰来改变材料表面的电子吸附或释放能力、利用离子注入或辐照技术来调整表面电位差异,以及通过增加电荷捕获和存储能力来增强摩擦电荷的产生。这些方法共同作用,实现了MECFs输出性能的大幅稳定提升。
1.2 物理改性
物理改性包括组分掺杂和表面微结构构筑2种方法。组分掺杂方法基于以下原理:掺杂材料例如碳纳米管(CNTs)、石墨烯或金属纳米颗粒,可以增强纤维基底中的电荷转移和存储,从而增加MECF的电荷密度,从而提高输出功率。Zheng等[24]通过在硝化棉(NC)摩擦正层中掺杂银纳米线(Ag NWs)来提高输出性能,掺杂Ag NWs的硝化棉基TENG(NC-Ag NWs)与未改性的TENG相比,摩擦电性能提高了360%,瞬时功率密度可达0.38 W/m2。He等[25]结合混合纳米尺度材料创建肖特基结,引入Ag NWs和锰掺杂(Mn(Bi0.5Na0.5)TiO3-BaTiO3, Mn-BNT-BT)的钙钛矿氧化物纳米晶体到电纺聚(偏二氟乙烯-co-六氟丙烯)(PVDF-HFP)纳米纤维中来增强摩擦层中摩擦电荷的动态移动。与原始PVDF-HFP基TENG相比,输出功率提高了386%。对于含有5% Ag NWs和5% Mn-BNT-BT纳米晶体的混合TENG,实现了2 170 V的峰值开路电压和47 W/m2的功率密度。物理掺杂增强介电性能,可以提高电荷捕获能力和增大功函数,同时肖特基结可以增加电子迁移和减少电荷扩散。
表面微结构构筑包括表面的粗糙度、纹理、形状等方面的设计加工,是改善MECFs表面电荷积累过程的关键因素。通过2类微结构的构建,即表面微图案化和多孔结构,可以有效影响界面的粗糙度来增强MECFs电输出性能。Domingos等[26]使用印刷石墨烯作为电极,PDMS和纺织品本身作为摩擦电对,开发了高效的柔性摩擦电纺织品。采用3种不同的沉积方法构筑电极,包括石墨烯滴膜(GDF)、石墨烯浸膜(GIF)和石墨烯喷雾膜(GDF),结果表明,与非平整化设备相比,3种印刷技术制备的柔性纺织电极性能都提升了4倍,功率密度达到3.08 μW/cm2。Salauddin等[27]利用织物辅助微图案化技术对MXene/硅橡胶纳米复合材料表面进行表面改性,输出电压和峰值电流密度相较于平面硅橡胶分别提高了9.8倍和20倍,峰值功率可达55.47 W/m2。因此,表面改性不仅提高了纤维的摩擦电性能,还增强了TENG的整体性能,使其更适合于自供能传感器和可穿戴电子设备的应用。
2 多维结构设计
MECFs的结构组成也是影响其输出性能重要因素之一。MECFs相比于平面薄膜TENGs,创新了很多复合的、衍生的工作模式。MECFs的织物优化结构策略主要包括一维纤维梯度皮芯层次结构、二维织物经纬交织结构和三维织物网络框架结构。MECFs多样的结构设计,增加了输出电流、电压和功率密度等,可以高效收集人体生物能量。
2.1 一维纤维梯度皮芯层次结构
一维纱线基智能纺织品的结构通常较为简单,制备方式多样,如湿法、干法、熔融及静电纺丝等。常见的一维MECF结构设计为芯-鞘复合结构。芯-鞘复合结构是一种由2种或多种不同材料组成的结构,其中一种材料作为中心芯线,另一种材料包裹在芯线周围形成鞘层。Ning等[28]使用Ag NWs/CNTs作为中间的芯线,PDMS作为封装的鞘层,制备了弹性纤维。这种弹性纤维具有优异的输出性能,开路电压达到22 V,功率密度达到21.5 μW/ m2,可作为自供能的多功能传感器用于监测人体运动和交互感应。Tian等[29]设计了核壳同轴结构的摩擦纳米发电机(CSTN),由1个空心硅胶内管和1个空心热收缩外管组成,它们分别被作为CSTN的核心和外壳。整个结构采用硅橡胶封装,保护器件免受环境污染,再将空气注入内管与外管之间的空间,形成气囊,可有效提高摩擦发电性能。在硅胶管的外表面包裹镀镍聚酯导电织物制成芯,在热收缩管外进行硅胶涂层并固化后进行导电硅胶涂层处理并固化制成鞘。对于一段6 cm长的CSTN,其开路电压可达到380 V,在约10 MΩ的负载电阻下峰值功率可达到1.638 mW,可以用在可穿戴设备、人机交互、健康监测等领域。
2.2 二维织物经纬交织结构
一维纱线基智能纺织品的电输出能力受限于较小的接触面积,同时其在结构和尺寸稳定性方面亦存在不足。如果将这些一维纱线通过编织、机织或针织技术转化为二维智能纺织品,则可以显著提升其整体电输出性能和稳定性。二维纺织品主要通过机织和针织2种工艺进行织造。机织物是通过将经纱与纬纱以垂直交错的方式编织而成,这个过程形成了具有不同纹理和性能的多样化织物。在机织技术中,织物的结构可以根据平纹、斜纹和缎纹等不同的组织形式进行分类。与机织相对的是针织工艺,针织物利用织针将纱线或长丝编织成环状结构,随后通过相互连接这些环形成织物,主要包括经编和纬编2种形式。此外,还有非织造织物,这种材料采用机械手段、化学处理、黏合或热加工等方法将多层纤维或纱线结合,制造出无需传统编织过程的非织造布。平纹是目前主要的MECFs结构之一。Tian等[30]将镍涂层聚酯导电纺织物和硅橡胶作为有效的摩擦电材料,通过经典的平纹织造方法,编织成5 cm×5 cm尺寸的织物TENG,其输出的开路电压高达540 V,表面功率密度峰值为0.892 mW/cm2,可用于收集人体运动能量。Zhou等[31]制备了一种基于纳米/微米核壳纱线的防水透气织物TENG,获得了高达20 V的开路电压和2.2 mW/m2的功率密度。该TENG可以用作电子皮肤,构建了基于人机交互理念的自供能柔性键盘系统。针织结构也是二维器件中常见的类型。Dong等[32]使用包裹有PTFE和锦纶66(PA66)的银导电纱线开发了一种可拉伸、舒适的纺织基TENG(t-TENG),在拉伸运动模式下,t-TENG的峰值功率密度可以达到1.484 mW/m2;在压缩运动模式下,其峰值功率密度可以达到7.531 mW/m2。t-TENG可用于将人体运动能量转化为电能,为智能电子纺织品提供动力。
2.3 三维织物网络框架结构
三维织物相较于二维织物,在结构上增加了厚度方向的维度,从而提供了更好的稳定性和防护性能。它们具有更高的结构完整性和尺寸稳定性,能够在不同环境条件下保持形状和功能,适合于高性能应用场景。此外,三维织物的高比表面积增强了MECFs的能量收集和传感能力,而其网络状结构提高了MECF的抗冲击性和耐久性。Dong等[33]基于三维五向编织结构,设计了具有高柔韧性、形状适应性、结构完整性、循环可洗性和优越力学稳定性等特点的TENG电子纺织品,可为微型可穿戴电子设备供电并响应微小的质量变化。Chen等[34]采用仿生鳞片结构,设计了平行分布和重叠分布的2种结构类型,开路电压在4 GΩ电阻下达到204.76 nW/m2的峰值功率密度,可用于多功能智能个人户外救援系统。Chen等[34]提出了一种三维双面色织结构TENG,通过双针床平织机技术编织而成,在2 kPa的压力下,开路电压约为45 V,峰值能量输出达到3.4 mW/m2,适用于能量收集、人体运动或机器人运动检测以及智能假肢。Shen等[35]采用一种三维单面提花绒面织物摩擦电纳米发电机(SJPF-TENG),具有高表面绒密度、优异的舒适性和透气性、良好的保温性能和卓越的耐用性,其峰值功率密度达到1.4 W/m2。Wu等[36]用工业制造的方式制造了三维编织可伸缩层级互锁花式纱TENG,最大峰值功率密度可以达到1.4 W/m2,用于收集生物力学能量和监测身体运动。通过以上这些三维纺织技术,能够实现更高性能和稳定性的智能纺织品,以满足多样化的应用需求。
3 能量管理设计
3.1 脉冲开关设计
采用脉冲模式是提高MECFs输出性能的有效方法之一,致力于隔绝MECFs内阻对外电路的影响。当开关工作时,MECFs中积累的电荷在极短时间内释放,大幅提高了在电路接通瞬间产生的电流脉冲,从而近似成为脉冲电流源。例如,通过运动触发开关、静电振动开关、等离子放电开关和电子开关等技术,可以实现对TENG输出的精确控制,从而在每个工作周期中实现最大电荷转移。Ben等[39]采用自同步机械开关,为TENG配备3个自激式机械开关,这些开关随着电极的移动而自动激活,根据其位置变化自动将系统电容配置为串联或并联。运动触发开关通过TENG自身的机械振动特性,实现自动触发其瞬间放电功能。Cheng等[40]将运动触发开关集成到了垂直-接触分离模式的TENG中。铝针作为触发开关的移动部分,连接到顶部电极,当TENG的运动达到极值时,铝针与触发开关的固定部分接触,导致瞬时放电,瞬时电流增加了近45倍,从5.7 μA增加到264 μA。静电振动开关通过利用TENG产生的电压差来驱动弹性振动系统,从而实现TENG的脉冲式电力输出。Zhou等[41]通过利用TENG产生的静电场来控制新型的三端口悬臂式屈曲开关(ACBS)。与传统的匹配阻抗输出相比,这种新型ACBS管理的平均功率提高了1.554倍,能够为蓝牙设备、电子手表、计算器和温度计等低功耗设备供电。Wu等[42]设计了一个齿轮和圆柱凸轮机构来提高TENG的工作频率并稳定输出,开发了一个控制模块,通过精确控制开关来提取最大输出能量,并研究了控制参数对能量提取过程的影响,通过优化控制参数,能量管理系统(PMS)的能量提取效率可以达到37.8%。
3.2 变压器与降压电路
变压器广泛应用于电网电压转换,能够在交变信号下表现出很高的能量转换效率,可以有效地将高压低电流转化成低压高电流输出。通过优化变压器的绕组比例,能够改善阻抗匹配效果和提高能量转化效率。Pu等[43]通过调整变压器的绕组比例,将TENG产生的脉冲电流转化为适合电池充电的电流和电压,并将功率传输效率从1.2%提高了约72.4%。Zhang等[44]首先提高材料的电荷密度,然后通过变压器的阻抗匹配设计,将输出电流从1.42 mA提升到54.5 mA,转化效率超过92.0%。Wang等[45]提出了一种通用的匹配电感器设计流程,结合火花开关,建立了一个能够管理6 kV超高电压的能量管理系统,实现了90.7%的能量转化效率,输出电压范围可达0~5 kV。
广泛用于微电子电路设计的降压电路也成功开发用于降低MECFs的内部阻抗。Li等[46]通过在TENG的PMC中集成气体放电管(GDT),实现了超过4 000倍的峰值电流提升,达到了170.7 mA,并在低电阻下实现了165.5 mW的峰值功率。使用Bennent倍频电路(BDC)调节TENG输出已被证明十分有效[47]。Ghaffarinejad等[48]研发了自增强型调理电路能够指数级地放大TENG从机械能域转化而来的输出电能,用半波整流器和全波整流器为同一个储能电容器充电,分别可将电容器快速充电至165 V和26 V的饱和值。与此同时,无磁性、小型化和质量轻的优点使Buck电路也很适合于柔性电子产品。Harmon等[49]在降压电路中选择了无源开关可控硅整流器(SCR)和齐纳二极管用于控制功率流路,而无需使用任何集成电路,实现了以TENG作为唯一电源的自供电解决方案。电路的工作过程大致可分为3个阶段。首先,当TENG的电压达到极值时,开关打开,TENG的能量转移到电感、电容器和电阻器中。然后开关关闭,电感中的能量转移到电容器和电阻器,电容器中存储的能量为电阻器供电。
3.3 能源存储系统
MECFs的脉冲式功率输出通常难以满足电子设备对持续运行的需求。将能量存储单元与MECFs结合,构成自充电电源单元(SCPU),是一种有效的解决策略。目前,可充电电池和超级电容器是与MECFs配套的2种主要能量存储技术。Li等[50]研究构建了一个高效能源传输系统,通过引入基于短路接触的原位功率管理,实现了TENG向锂离子电池即时释放静电能产生高效连接。这种短路接触原位设计确保了接触-能量接触-分离TENG(CCS-TENG)在每个接触-分离周期都能实现最大能量输出,平均每个循环的能量密度高达131.1 mJ/m2,循环寿命超过130万次。此外,多项研究证明,使用TENG充电为电池充电能够降低电池的电荷转移电阻,有助于改善锂离子在电池内部的扩散动力学,这对于提高电池的充放电效率和循环性能是有益的。同理,钠离子电池可以储存来自MECFs的电能,展现出良好的兼容性。Xia等[51]研究了一种全透明且可拉伸的TENG,可以通过自身变形和与其它摩擦电材料非接触条件下产生电能,储存在FeSe2基新型钠离子电池,可以在13 h内为钠离子电池充电至3 V。
超级电容器是一种新型的储能装置,以其高比表面积、快速充放电能力、长循环寿命和高功率密度而受到广泛关注。Tao等[52]通过将层状多层膜卷起形成圆柱形制备了纱线基不对称超级电容器,正电性膜主要由Ag NWs/MnO2-热塑性聚氨酯(TPU)层、聚丙烯(PP)分离层组成,负电性膜由Ag NWs/活性炭-TPU按顺序堆叠而成。这种基于纱线的超级电容器展示出高达3.2 mW·h/cm3的高体积能量密度和长达10 000次的优异循环稳定性。Zhao等[53]报道了一种基于高温炭化工艺制备的炭化三聚氰胺泡沫作为电极材料的高频超级电容器。该电容器在存储不同频率(40~1 350 Hz)的脉冲能量方面表现出色,与常规的活性炭的高频率超级电容器相比,在1 350 Hz时能量利用效率提高了20.3%。
4 结束语
机电转化纤维(MECFs)作为新兴的可穿戴能源技术,其性能提升策略涉及材料创新、结构设计和电源管理与优化等多个方面。首先,在材料创新方面,需继续探索和开发新型材料,在人工聚合物天然高分子材料中通过表面接枝、组分掺杂和微结构设计等技术,实现更高的电荷密度和更稳定的输出性能,进一步提高材料的摩擦电性能和耐久性。在提供优异的摩擦电性能的同时,保持良好的柔韧性和舒适性,满足长时间穿戴要求。未来的材料研究还需特别注重环保和可持续性,减少对环境的影响。
其次,在结构优化方面,传统的二维织物虽然已经取得了显著进展,但三维结构的MECFs具有更大的潜力。三维结构不仅可增加接触面积,提高电荷转移效率,还能提供更好的稳定性和防护性能,适合于高性能应用场景。同时,结构设计还应注意如下3个方面:一是仿生设计,模拟自然界中的一些结构,如鳞片、羽毛等;二是多功能集成,开发多原理、多应用、智能化的MECFs,以满足不同应用场景的需求;三是灵活性和可定制性,通过三维打印技术根据用户个性化需求快速制造出符合人体工学的MECFs,为用户提供更加舒适的佩戴体验。
在电源管理方面,开发更高效的电源管理电路,以提高能量转化效率和输出稳定性,仍是未来研究的重点。可借助智能控制技术,使开关能够根据MECFs的实时输出状态和外部负载需求,自动调整触发参数和工作模式,实现能量的高效利用。对于变压器和降压电路,开发能够根据输入电压、电流的动态变化,自动切换或组合不同降压电路的智能降压系统,以实现对MECFs输出的精确调节。在小型化和集成化方面,将脉冲开关设计、变压器与降压电路等功能模块进行高度集成,构建一个紧凑、高效且具有自我诊断、自我优化能力的一体化能量管理系统。
MECFs还将应用于更多领域,如医疗健康监测、人机交互、智能家居等,显示了MECFs与物联网、人工智能等技术结合后所发挥的巨大潜力。总之,MECFs作为一种新型的可穿戴能源及传感技术,未来发展聚焦于材料创新、结构优化和电源管理,这推动MECFs向更智能、更灵活的方向发展,为人类提供更加便捷、高效的能源解决方案,为人们的生活带来更多的便利和创新。
参考文献
Textile triboelectric nanogenerator: future smart wearable energy-integration technology
[J].
Triboelectric nanogenerators
[J].
机电转化纤维及自供能可穿戴纺织器件
[J].
Mechano-electric conversion fiber and self-powered wearable textile devices
[J].
面向个性化健康医疗的智能纺织品研究进展
[J].
Advances in smart textiles oriented to personalized healthcare
[J].
Highly enhanced triboelectric performance from increased dielectric constant induced by ionic and interfacial polarization for chitosan based multi-modal sensing system
[J].
Anti-moisture, anti-bacterial cellulosic triboelectric materials enabled by hydroxyl coordination effect
[J].
Fiber/yarn-based triboelectric nanogenerators (TENGs): fabrication strategy, structure, and application
[J].
Enhancing energy harvesting performance and sustainability of cellulose-based triboelectric nanogenerators: strategies for performance enhancement
[J].
An intelligent self-powered life jacket system integrating multiple triboelectric fiber sensors for drowning rescue
[J].
Self-powered wearable touchpad composed of all commercial fabrics utilizing a crossline array of triboelectric generators
[J].
High-voltage direct current triboelectric nanogenerator based on charge pump and air ionization for electrospinning
[J].
Hierarchical nanofibrous mat via water-assisted electrospinning for self-powered ultrasensitive vibration sensors
[J].
A review of single electrode triboelectric nanogenerators
[J].
Scalable spinning, winding, and knitting graphene textile TENG for energy harvesting and human motion recognition
[J].
Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial's structure
[J].
Universal power management strategy for triboelectric nanogenerator
[J].
Quantifying the triboelectric series
[J].
Standardized measurement of dielectric materials' intrinsic triboelectric charge density through the suppression of air breakdown
[J].
Boosting the electrical performance of PLA-based triboelectric nanogenerators for sustainable power sources and self-powered sensing
[J].
Improved electrical output performance of cellulose-based triboelectric nanogenerators enabled by negative triboelectric materials
[J].
Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity
[J].
Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator
[J].
Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator
[J].
A waterproof, breathable nitrocellulose-based triboelectric nanogenerator for human-machine interaction
[J].
Enhancing output performance of PVDF-HFP fiber-based nanogenerator by hybridizing silver nanowires and perovskite oxide nanocrystals
[J].
Printed graphene electrodes for textile-embedded triboelectric nanogenerators for biomechanical sensing
[J].
Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics
[J].
Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing
[J].
Core-shell coaxially structured triboelectric nanogenerator for energy harvesting and motion sensing
[J].
Performance-boosted triboelectric textile for harvesting human motion energy
[J].
Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems
[J].
Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources
[J].
Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing
[J].
3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors
[J].
Mass-production of biomimetic fur knitted triboelectric fabric for smart home and healthcare
[J].
Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system
[J].
Achieving high performance triboelectric nanogenerators simultaneously with high-voltage and high-charge energy cycle
[J].
Collecting the space-distributed Maxwell's displacement current for ultrahigh electrical density of TENG through a 3D fractal structure design
[J].
A new type of triboelectric nanogenerator with self-actuated series-to-parallel electrical interface based on self-synchronized mechanical switches for exponential charge accumulation in a capacitor
[J].
Pulsed nanogenerator with huge instantaneous output power density
[J].
DOI:10.1021/nn403151t
PMID:23883160
[本文引用: 1]
A nanogenerator (NG) usually gives a high output voltage but low output current, so that the output power is low. In this paper, we developed a general approach that gives a hugely improved instantaneous output power of the NG, while the entire output energy stays the same. Our design is based on an off-on-off contact based switching during mechanical triggering that largely reduces the duration of the charging/discharge process, so that the instantaneous output current pulse is hugely improved without sacrificing the output voltage. For a vertical contact-separation mode triboelectric NG (TENG), the instantaneous output current and power peak can reach as high as 0.53 A and 142 W at a load of 500 Ω, respectively. The corresponding instantaneous output current and power density peak even approach 1325 A/m(2) and 3.6 × 10(5) W/m(2), which are more than 2500 and 1100 times higher than the previous records of TENG, respectively. For the rotation disk based TENG in the lateral sliding mode, the instantaneous output current and power density of 104 A/m(2) and 1.4 × 10(4) W/m(2) have been demonstrated at a frequency of 106.7 Hz. The approach presented here applies to both a piezoelectric NG and a triboelectric NG, and it is a major advance toward practical applications of a NG as a high pulsed power source.
Autonomous cantilever buck switch for ultra-efficient power management of triboelectric nanogenerator
[J].
A high-stability triboelectric nanogenerator with mechanical transmission module and efficient power management system
[J].
Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators
[J].
Self-powered seawater electrolysis based on a triboelectric nanogenerator for hydrogen production
[J].
DOI:10.1021/acsnano.2c06701
PMID:36098463
[本文引用: 1]
Water splitting for yielding high-purity hydrogen represents the ultimate choice to reduce carbon dioxide emission owing to the superior energy density and zero-pollution emission after combustion. However, the high electricity consumption and requirement of large quantities of pure water impede its large-scale application. Here, a triboelectric nanogenerator (W-TENG) converting offshore wind energy into electricity is proposed for commercial electric energy saving and cost reduction. By introducing PTFE/POM dielectric pairs with matched HOMO/LUMO band gap energy, a high charge density is achieved to promote the output of W-TENG. With the impedance matching design of transformers with the internal resistance of W-TENG, the output current is further enhanced from 1.42 mA to 54.5 mA with a conversion efficiency of more than 92.0%. Furthermore, benefiting from the high electrocatalytic activity (overpotential = 166 mV and Tafel slope = 181.2 mV dec) of a carbon paper supported NiCoP-MOF catalyst, natural seawater can be adopted as a resource for in situ hydrogen production without acid or alkaline additives. Therefore, the self-powered seawater electrolysis system achieves a H production rate as high as 1273.9 μL min m with a conversion efficiency of 78.9%, demonstrating a more practical strategy for conversion of wind energy into renewable hydrogen energy.
Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design
[J].
Gas discharge tubes for significantly boosting the instantaneous current and active power of load driven by triboelectric nanogenerators
[J].
Electrostatic energy harvesting of kinetic motions using a MEMS device and a Bennet doubler conditioning circuit
[J].
A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator
[J].
Self-driven power management system for triboelectric nanogenerators
[J].
Efficient energy transport from triboelectric nanogenerators to lithium-ion batteries via releasing electrostatic energy instantaneously
[J].
Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems
[J].
Integrating all-yarn-based triboelectric nanogenerator/supercapacitor for energy harvesting, storage and sensing
[J].
High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanog-enerators
[J].
/
| 〈 |
|
〉 |

京公网安备11010502044800号