纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 41-48.doi: 10.13475/j.fzxb.20250104302

• 特约专栏: 智能纤维与织物器件 • 上一篇    下一篇

基于接触起电效应的新型机电转化纤维性能提升策略

陈枭1, 赵继忠1,2, 董凯1,2()   

  1. 1.中国科学院 北京纳米能源与系统研究所, 北京 101400
    2.中国科学院大学 纳米科学与工程学院, 北京 100049
  • 收稿日期:2025-01-06 修回日期:2025-02-05 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 董凯(1989—),男,研究员,博士。主要研究方向为基于摩擦电效应新型机电转化纤维材料的优化设计、性能提升、规模制备和集成应用。E-mail:dongkai@binn.cas.cn
  • 作者简介:陈枭(1998—),女,硕士。主要研究方向为摩擦纳米发电机材料改性。
  • 基金资助:
    国家自然科学基金项目(22109012);北京市自然科学基金项目(L222037);北京市自然科学基金项目(2212052);中国博士后科学基金项目(2024M753175);中国博士后科学基金特别资助项目(GZC20232612);中央高校基本科研业务费资助项目(E1E46805)

Strategies for enhancing performance of novel mechano-electric conversion fibers based on contact electrification effect

CHEN Xiao1, ZHAO Jizhong1,2, DONG Kai1,2()   

  1. 1. Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
    2. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-01-06 Revised:2025-02-05 Published:2025-05-15 Online:2025-06-18

摘要:

机电转化纤维(MECFs)是一类将新兴的接触或摩擦起电技术与传统的可穿戴纤维或纺织材料相结合,具有突出的自主式供电或自驱动传感功能的新型智能纤维材料。然而,MECFs的大面积制备和规模化应用受到其能量转化效率低和输出功率密度低等性能瓶颈的限制。为充分挖掘MECFs的性能潜力并发挥其在面向人体可穿戴应用中的优势,详细探讨了MECFs的电输出性能提升策略,包括材料选择与改性、结构设计、能量管理与优化;其中,聚合物材料本征性质是主导MECFs机电转化性能的关键因素之一,可以从化学、物理角度进行改性处理;MECFs的多维纤维或织物结构设计能够增加起电材料之间的有效接触面积,从而能够提升界面电荷转移量。同时,为满足人体表面长周期、可持续稳定供能需求,需对纤维进行低功耗、微型化能量管理,将MECFs的高压低流、高阻抗的交流输出形式转变为可穿戴电子设备所需要的稳压稳流、阻抗匹配的直流需求形式。最后,简要总结MECFs在自供能可穿戴传感技术中的应用并展望了其未来发展的趋势。MECFs的研究与应用目前正处于快速发展阶段,未来需结合材料改性、结构优化和能量管理等策略,推动其向高性能可穿戴供能或传感设备迈进。

关键词: 接触起电, 机电转化纤维, 摩擦纳米发电机, 能源管理, 多维结构设计, 智能纺织品

Abstract:

Significance Mechano-electric conversion fibers (MECFs) represent a development in smart fiber materials, merging the novel field of triboelectric technologies with conventional wearable fibers and textiles. This integration enhances the functionality of autonomous power supply for wearable electronics. The significance of MECFs also lies in their potential to revolutionize smart sensing, including healthcare, sports, and personal electronics, by providing a sustainable self-powered sensing signals. However, the realization of MECF's potential faces challenges such as low energy conversion efficiency and output power density. Addressing these limitations is crucial for unlocking MECF's capabilities in energy supplements and human-body wearable applications, where reliable and continuous power supply is essential for the effective operation of sensors and other electronic devices. This research underscores the importance of enhancing electrical output performance through innovative material selection, structural design, and energy management strategies, paving the way for more efficient and versatile wearable devices.
Progress Recent advancements in MECFs have made significant strides towards overcoming the inherent limitations of these materials, particularly focusing on improving their mechanical-electric conversion performance. A key area of progress involves the selection and modification of polymer materials, whose intrinsic properties are pivotal in determining MECF's overall efficiency. By applying chemical and physical modifications, researchers have been able to adjust or enhance the material components, surface characteristics and conductivity of polymers, thereby increasing their ability to generate electricity from mechanical movements. Another critical development has been the introduction of multidimensional fiber or fabric structures designed to maximize the effective contact area between electrification materials. These designs not only increase the amount of interfacial charge transfer but also improve the durability and flexibility of MECFs, making them more suitable for integration into wearable devices. Furthermore, addressing the need for long-term, sustainable power supply on human surfaces, advanced power management systems is also essential. These systems convert the MECF's high-voltage, low-current alternating current (AC) output typical into a regulated direct current (DC) form, ensuring compatibility with wearable electronics while minimizing energy loss. Such innovations have demonstrated the feasibility of MECFs in self-powered wearable sensing technologies, highlighting their potential for broader applications and marking a significant advancement in the field.
Conclusion and Prospect The culmination of current research efforts indicates substantial progress in enhancing the performance of MECFs, yet challenges remain regarding their practical application and scalability. Material research should focus on developing new polymers through surface grafting, component doping, and microstructure design to achieve higher charge density and stable output performance while maintaining flexibility and comfort for long-term wear. Structural optimization has shown that three-dimensional (3-D) MECFs hold greater potential than traditional two-dimensional (2-D) fabrics by virtut of increased contact area, improved charge transfer efficiency, stability, and protective capabilities, which are crucial for high-performance applications. Additionally, bio-inspired designs, multifunctional integration, and personalized customization via 3D printing can enhance the versatility and user experience of MECFs. Intelligent voltage regulation systems capable of dynamically adjusting to input voltage and current changes will further optimize MECFs performance. Looking forward, MECF's application in healthcare monitoring, human-machine interaction, and smart homes showcases their immense potential when combined with IoT and AI technologies. Overall, future developments in material innovation, structural optimization, and power management are set to propel MECFs towards smarter, more flexible solutions, offering enhanced convenience and efficiency in wearable energy and sensing technologies.

Key words: contact electrification, mechano-electric conversion fiber, triboelectric nanogenerator, energy management, multi-dimensional structure design, intelligent textile

中图分类号: 

  • TS102
[1] ZHAO Z, HU Y. Textile triboelectric nanogenerator: future smart wearable energy-integration technology[J]. Advanced Materials Technologies, 2024. DOI: 10.1002/admt.202302012.
[2] CHENG T, SHAO J, WANG Z L. Triboelectric nanogenerators[J]. Nature Reviews Methods Primers, 2023. DOI: 10.1038/s43586-023-00230-1.
[3] 赵继忠, 陈枭, 董凯. 机电转化纤维及自供能可穿戴纺织器件[J]. 科学通报, 2024. DOI: 10.1360/tb-2024-0647.
ZHAO Jizhong, CHEN Xiao, DONG Kai. Mechano-electric conversion fiber and self-powered wearable textile devices[J]. Chinese Science Bulletin, 2024. DOI: 10.1360/tb-2024-0647.
[4] 董凯, 吕天梅, 盛非凡, 等. 面向个性化健康医疗的智能纺织品研究进展[J]. 纺织学报, 2024, 45(1):240-249.
DONG Kai, LÜ Tianmei, SHENG Feifan, et al. Advances in smart textiles oriented to personalized healthcare[J]. Journal of Textile Research, 2024, 45(1):240-249.
[5] SUN J, CHOI H, CHA S, et al. Highly enhanced triboelectric performance from increased dielectric constant induced by ionic and interfacial polarization for chitosan based multi-modal sensing system[J]. Advanced Functional Materials, 2021. DOI:10.1002/adfm.202109139.
[6] ZHANG P, HUANG H, WANG X, et al. Anti-moisture, anti-bacterial cellulosic triboelectric materials enabled by hydroxyl coordination effect[J]. Nano Energy, 2024. DOI:10.1016/j.nanoen.2024.109472.
[7] CHEN Y, LING Y, YIN R. Fiber/yarn-based triboelectric nanogenerators (TENGs): fabrication strategy, structure, and application[J]. Sensors (Basel), 2022. DOI: 10.3390/s22249716.
[8] LIAO H, NA J, ZHOU W, et al. Enhancing energy harvesting performance and sustainability of cellulose-based triboelectric nanogenerators: strategies for performance enhancement[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108769.
[9] ZHANG Y, LI C, WEI C, et al. An intelligent self-powered life jacket system integrating multiple triboelectric fiber sensors for drowning rescue[J]. InfoMat, 2024. DOI: 10.1002/inf2.12534.
[10] JEON S B, KIM W G, PARK S J, et al. Self-powered wearable touchpad composed of all commercial fabrics utilizing a crossline array of triboelectric generators[J]. Nano Energy, 2019. DOI:10.1016/j.nanoen.2019.103994.
[11] SUN D J, SONG W Z, LI C L, et al. High-voltage direct current triboelectric nanogenerator based on charge pump and air ionization for electrospinning[J]. Nano Energy, 2022. DOI:10.1016/j.nanoen.2022.107599.
[12] WANG S, TIAN M, HU S, et al. Hierarchical nanofibrous mat via water-assisted electrospinning for self-powered ultrasensitive vibration sensors[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107149.
[13] AKRAM W, CHEN Q, XIA G, et al. A review of single electrode triboelectric nanogenerators[J]. Nano Energy, 2023. DOI:10.1016/j.nanoen.2022.108043.
[14] XIONG Y, LUO L, YANG J, et al. Scalable spinning, winding, and knitting graphene textile TENG for energy harvesting and human motion recognition[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2022.108137.
[15] LI X, XU L, LIN P, et al. Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial's structure[J]. Energy & Environmental Science, 2023, 16(7): 3040-3052.
[16] XI F, PANG Y, LI W, et al. Universal power management strategy for triboelectric nanogenerator[J]. Nano Energy, 2017, 37: 168-176.
[17] ZOU H, ZHANG Y, GUO L, et al. Quantifying the triboelectric series[J]. Nat Commun, 2019. DOI:10.1038/s41467-019-09461-x.
[18] LIU D, ZHOU L, CUI S, et al. Standardized measurement of dielectric materials' intrinsic triboelectric charge density through the suppression of air breakdown[J]. Nat Commun, 2022. DOI:10.1038/s41467-022-33766-z.
[19] SHI X, SI W, ZHU J, et al. Boosting the electrical performance of PLA-based triboelectric nanogenerators for sustainable power sources and self-powered sensing[J]. Small, 2024. DOI: 10.1002/smll.202307620.
[20] WANG F, WANG S, LIU Y, et al. Improved electrical output performance of cellulose-based triboelectric nanogenerators enabled by negative triboelectric materials[J]. Small, 2024. DOI: 10.1002/smll.202308195.
[21] NIE S, FU Q, LIN X, et al. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2020.126512.
[22] ROY S, KO H U, MAJI P K, et al. Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123723.
[23] VU D L, LE C D, VO C P, et al. Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator[J]. Composites Part B: Engineering, 2021. DOI: 10.1016/j.compositesb.2021.109135.
[24] ZHENG T, LI G, ZHANG L, et al. A waterproof, breathable nitrocellulose-based triboelectric nanogenerator for human-machine interaction[J]. Nano Energy, 2023. DOI:10.1016/j.nanoen.2023.108649.
[25] HE Y, WANG H, SHA Z, et al. Enhancing output performance of PVDF-HFP fiber-based nanogenerator by hybridizing silver nanowires and perovskite oxide nanocrystals[J]. Nano Energy, 2022. DOI:10.1016/j.nanoen.2022.107343.
[26] DOMINGOS I, SAADI Z, SADANANDAN K S, et al. Printed graphene electrodes for textile-embedded triboelectric nanogenerators for biomechanical sensing[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108688.
[27] SALAUDDIN M, RANA S M S, RAHMAN M T, et al. Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202107143.
[28] NING C, DONG K, CHENG R, et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202006679.
[29] TIAN Z, HE J, CHEN X, et al. Core-shell coaxially structured triboelectric nanogenerator for energy harvesting and motion sensing[J]. RSC Advances, 2018, 8(6): 2950-2957.
[30] TIAN Z, HE J, CHEN X, et al. Performance-boosted triboelectric textile for harvesting human motion energy[J]. Nano Energy, 2017, 39: 562-570.
[31] ZHOU M, XU F, MA L, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107885.
[32] DONG S, XU F, SHENG Y, et al. Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources[J]. Nano Energy, 2020. DOI:10.1016/j.nanoen.2020.105327.
[33] DONG K, PENG X, AN J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing[J]. Nat Commun, 2020. DOI: 10.1038/s41467-020-16642-6.
[34] CHEN C, CHEN L, WU Z, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors[J]. Materials Today, 2020, 32: 84-93.
[35] SHEN Y, CHEN C, CHEN L, et al. Mass-production of biomimetic fur knitted triboelectric fabric for smart home and healthcare[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.109510.
[36] WU R, LIU S, LIN Z, et al. Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system[J]. Advanced Energy Materials, 2022. DOI: 10.1002/aenm.202201288.
[37] GAO Y, LIU J, ZHOU L, et al. Achieving high performance triboelectric nanogenerators simultaneously with high-voltage and high-charge energy cycle[J]. Energy & Environmental Science, 2024, 17(22): 8734-8744.
[38] ZHANG L A, LIU S, WEN J, et al. Collecting the space-distributed Maxwell's displacement current for ultrahigh electrical density of TENG through a 3D fractal structure design[J]. Energy & Environmental Science, 2023, 16(9): 3781-3791.
[39] BEN OUANES M A, SAMAALI H, et al. A new type of triboelectric nanogenerator with self-actuated series-to-parallel electrical interface based on self-synchronized mechanical switches for exponential charge accumulation in a capacitor[J]. Nano Energy, 2019, 62: 465-474.
[40] CHENG G, LIN Z H, LIN L, et al. Pulsed nanogenerator with huge instantaneous output power density[J]. ACS Nano, 2013, 7(8): 7383-7391.
doi: 10.1021/nn403151t pmid: 23883160
[41] ZHOU H, LIU G, BU T, et al. Autonomous cantilever buck switch for ultra-efficient power management of triboelectric nanogenerator[J]. Applied Energy, 2024. DOI: 10.1016/j.apenergy.2023.122475.
[42] WU H, LI H, WANG X. A high-stability triboelectric nanogenerator with mechanical transmission module and efficient power management system[J]. Journal of Micromechanics and Microengineering, 2020. DOI: 10.1088/1361-6439/abb754.
[43] PU X, LIU M, LI L, et al. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators[J]. Advanced Science (Weinh), 2016. DOI: 10.1002/advs.201500255.
[44] ZHANG B, ZHANG C, YANG O, et al. Self-powered seawater electrolysis based on a triboelectric nanogenerator for hydrogen production[J]. ACS Nano, 2022, 16(9): 15286-15296.
doi: 10.1021/acsnano.2c06701 pmid: 36098463
[45] WANG Z, TANG Q, SHAN C, et al. Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design[J]. Energy & Environmental Science, 2021, 14(12): 6627-6637.
[46] LI B, YANG Y, CHEN J, et al. Gas discharge tubes for significantly boosting the instantaneous current and active power of load driven by triboelectric nanogenerators[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108200.
[47] ALNEAMY A, SAMAALI H, NAJAR F. Electrostatic energy harvesting of kinetic motions using a MEMS device and a Bennet doubler conditioning circuit[J]. IEEE Instrumentation & Measurement Magazine, 2023, 26(3): 14-20.
[48] GHAFFARINEJAD A, HASANI J Y, HINCHET R, et al. A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator[J]. Nano Energy, 2018, 51: 173-184.
[49] HARMON W, BAMGBOJE D, GUO H Y, et al. Self-driven power management system for triboelectric nanogenerators[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.104642.
[50] LI X, GAO Y, HU Y, et al. Efficient energy transport from triboelectric nanogenerators to lithium-ion batteries via releasing electrostatic energy instantaneously[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.150449.
[51] XIA K, TIAN Y, FU J, et al. Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106210.
[52] TAO R, MAO Y, GU C, et al. Integrating all-yarn-based triboelectric nanogenerator/supercapacitor for energy harvesting, storage and sensing[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.154358.
[53] ZHAO M, NIE J, LI H, et al. High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanog-enerators[J]. Nano Energy, 2019, 55: 447-453.
[1] 于梦菲, 高文丽, 任婧, 曹雷涛, 彭若铉, 凌盛杰. 摩擦纳米发电机用皮芯结构纤维的制备及其性能[J]. 纺织学报, 2025, 46(05): 1-9.
[2] 韩力杰, 刘樊, 张其冲. 纤维状水系锌离子电池的研究进展与展望[J]. 纺织学报, 2025, 46(05): 59-69.
[3] 闫静, 王亚倩, 刘晶晶, 李好义, 杨卫民, 康卫民, 庄旭品, 程博闻. 熔融静电纺长丝纱的制备及其在摩擦纳米发电机中的应用[J]. 纺织学报, 2025, 46(05): 23-29.
[4] 刘烨, 王俊胜, 金星. 消防员个人防护装备用智能纺织品研究进展[J]. 纺织学报, 2025, 46(05): 105-115.
[5] 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51.
[6] 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233.
[7] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[8] 杨辰晖, 陈檬迪, 关艳, 肖红. 基于光栅动画图案合成光纤织物的设计及其实现[J]. 纺织学报, 2024, 45(07): 40-46.
[9] 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238.
[10] 董凯, 吕天梅, 盛非凡, 彭晓. 面向个性化健康医疗的智能纺织品研究进展[J]. 纺织学报, 2024, 45(01): 240-249.
[11] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
[12] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[13] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[14] 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95.
[15] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!