纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 49-58.doi: 10.13475/j.fzxb.20241205002

• 特约专栏: 智能纤维与织物器件 • 上一篇    下一篇

智能变形纤维/织物材料研究进展

吴梦婕1, 夏勇1, 张雨凡2, 周欣然2, 俞建勇1,2, 熊佳庆1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2024-12-23 修回日期:2025-02-14 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 熊佳庆(1986—),男,教授,博士。研究方向为智能材料、柔性/穿戴电子和软体机器人。E-mail:jqxiong@dhu.edu.cn
  • 作者简介:吴梦婕(1997—),女,博士生。研究方向为智能纤维、驱动器和软体机器人。
  • 基金资助:
    国家自然科学基金项目(52103254);国家自然科学基金项目(52273244)

Research progress in deformable fiber/fabric smart materials

WU Mengjie1, XIA Yong1, ZHANG Yufan2, ZHOU Xinran2, YU Jianyong1,2, XIONG Jiaqing1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2024-12-23 Revised:2025-02-14 Published:2025-05-15 Online:2025-06-18

摘要:

变形-感知一体化智能材料具备自适应形变和交互安全性,可实时监测并反馈环境或自身状态信息,在智能装备、工业生产/生活、环境和医用等领域有重要应用。近年来,纤维基智能变形材料研究热度空前,并逐步形成了一体化变形-感知智能材料这个重要方向。为系统展示该领域成果并促进领域进一步发展,首先综述了纤维/织物基驱动器的研究进展,具体阐述了各类刺激响应的驱动变形原理;接着着重介绍了一体化驱动-感知型智能纤维/织物材料的应用,阐述了该类材料发展面临的挑战和可能的解决方案。最后指出:未来应着重深化机制研究、提升材料性能和环境适应性、推动智能变形纤维材料的集成化/智能化/规模化发展。

关键词: 智能变形材料, 纤维, 纱线, 织物, 驱动-感知一体, 驱动器, 软体机器人

Abstract:

Significance Perceptive deformable smart materials, inspired by soft organisms, exhibit adaptive deformability and safety interaction superiorities. They can monitor and feedback environmental information or facilitate self-detection in real time, showing important application potentials in smart equipment, industrial production, daily life, environment and biomedicine, and so on. Flexible fibers possess high specific surface area and morphological superiority, which can be transformed into yarns, loops, and fabrics through textile processes, demonstrating high designability in structure, functions, mechanical properties and deformation capabilities, making them an ideal candidate for creating smart deformable materials. In recent years, tremendous efforts have been dedicated to the exploitation of fiber-based smart deformable materials. In particular, perceptive deformation fiber materials have attracted much research attention, promising the integration of deformation and sensing promoting the development of smart material in the fields of wearables, e-skins, soft robotics, military and aerospace.
Progress In recent years, substantial progress has been achieved in the research of smart deformable fiber materials. These materials can respond to various environmental stimuli, such as humidity, heat, light, electricity, magnetism, and air pressure, thereby triggering actuations like contraction, expansion, bending, and rotation, and they are widely applied in multiple fields. In terms of actuation mechanisms, electrical actuation has gained considerable attention by virtue of its high controllability and rapid response. The carbon nanotube/polyaniline fiber actuator can operate in aqueous electrolytes at a low voltage of 2 V, demonstrating significant potential for use in implantable artificial muscles. Moisture actuation utilizes the hygroscopic properties of materials to achieve actuation. Light actuation relies on photothermal or photochemical effects to enable rapid and reversible deformations. The double-layered fiber membrane enables bidirectional bending in response to both light and humidity, exhibiting an ultrafast response rate and a substantial bending curvature. Magnetic actuation materials integrate magnetic particles or fibers, which enable complex deformations under magnetic fields.The magnetic coaxial fibers exhibit multifunctional motions, including crawling, walking, and swimming, when exposed to magnetic fields. Pneumatic actuation relies on external air pressure. The knitted pneumatic actuator can achieve complex movements with precise control. In terms of actuation-sensing integration, fiber actuators with integrated sensing functions can monitor environmental or self-states, thereby promoting the development of artificial muscles and soft robots. Furthermore, origami techniques have provided novel ideas for the design and functional expansion of actuators.
Conclusion and Prospect Although certain achievements have been made in the research on perceptive deformable fiber/fabric materials, challenges remain in improving the response performance, stability/reliability, and application feasibility of the materials. Firstly, it is necessary to further explore and gain an in-depth understanding of actuation mechanisms, clarify the relationship between the micro and macro deformation performance of materials, and leverage simulation and machine learning technologies to improve macro deformation performance. Secondly, it is essential to enhance the deformation performance and long-term stability of materials through material and structural innovations, as well as intelligent encapsulation technologies, so as to improve their reliability in harsh environments. Finally, facilitating module/function integration and large-scale manufacturing by weaving high performance fibers/yarns with textile engineering technologies would be a promising solution to address these concerns and advance the field of intelligent deformable materials. In the future, fiber/fabric based smart deformation materials are expected to be widely used in responsive smart devices and equipment, serving applications in soft robotics, wearables, rehabilitation assistance, bio-health, military equipment, aerospace, smart industry, and smart agriculture, among other fields.

Key words: smart deformable material, fiber, yarn, fabric, actuation-sensing integration, actuator, soft robot

中图分类号: 

  • TS102.1

图1

纤维基电响应驱动器"

图2

纤维基湿气响应驱动器"

图3

光热-水分响应的非对称全纤维膜驱动器 注:MRL表示湿响应层;TRL表示热响应层。"

图4

纤维基磁/气动响应驱动器"

图5

变形-感知一体的人工肌肉"

图6

变形-感知一体的软体机器人"

[1] WILSON A M, LOWE J C, ROSKILLY K, et al. Locomotion dynamics of hunting in wild cheetahs[J]. Nature, 2013, 498(7453): 185-189.
[2] CROXALL John P, SILK Janet R D, PHILLIPS Richard A, et al. Global circumnavigations: tracking year-round ranges of nonbreeding albatrosses[J]. Science, 2005, 307(5707): 249-250.
pmid: 15653503
[3] SILVA Pedro E S, LIN Xueyan, VAARA Maija, et al. Active textile fabrics from weaving liquid crystalline elastomer filaments[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202210689.
[4] ZHANG Chun, FEI Guoxia, LU Xili, et al. Liquid crystal elastomer artificial tendrils with asymmetric core-sheath structure showing evolutionary biomimetic locomotion[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202307210.
[5] CHEN Wenhui, TONG Dezhong, MENG Linghan, et al. Knotted artificial muscles for bio-mimetic actuation under deepwater[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202400763.
[6] ZHANG Zhuang, LONG Yongzhou, CHEN Genliang, et al. Soft and lightweight fabric enables powerful and high-range pneumatic actuation[J]. Science Advances, 2023. DOI: 10.1126/sciadv.adg1203.
[7] AI Wenfei, HOU Kai, WU Jiaxin, et al. Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation[J]. Nature Communications, 2024. DOI: 10.1038/s41467-024-45540-4.
[8] PENG Yangyang, SUN Fengxin, XIAO Caiqin, et al. Hierarchically structured and scalable artificial muscles for smart textiles[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54386-54395.
[9] 王建萍, 朱妍西, 沈津竹, 等. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(5): 239-247.
WANG Jianping, ZHU Yanxi, SHEN Jinzhu, et al. Advances in application of soft robot in the apparel field[J]. Journal of Textile Research, 2024, 45(5): 239-247.
[10] DARMAWAN B A, GONG D, PARK H, et al. Magnetically controlled reversible shape-morphing microrobots with real-time X-ray imaging for stomach cancer applications[J]. Journal of Materials Chemistry B, 2022, 10(23): 4509-4518.
[11] QIU Shuang, PEI Zhongcai, WANG Chen, et al. Systematic review on wearable lower extremity robotic exoskeletons for assisted locomotion[J]. Journal of Bionic Engineering, 2023, 20(2): 436-469.
[12] XIONG Wennan, ZHU Chen, GUO Dongliang, et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106550.
[13] HAN Minwoo, RODRIGUE Hugo, CHO Seunghyun, et al. Woven type smart soft composite for soft morphing car spoiler[J]. Composites Part B: Engineering, 2016, 86: 285-298.
[14] ZHANG Yufan, ZHOU Xinran, LIU Luyun, et al. Highly-aligned all-fiber actuator with asymmetric photothermal-humidity response and autonomous perceptivity[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202404696.
[15] ZHENG Maorong, LIU Mingyuan, CHENG Yin, et al. Stimuli-responsive fiber/fabric actuators for intelligent soft robots: from current progress to future opportuni-ties[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.110050.
[16] XUE Enbo, LIU Limei, WU Wei, et al. Soft fiber/textile actuators: from design strategies to diverse applications[J]. ACS Nano, 2023, 18(1): 89-118.
[17] SUN Linchao, CHE Lixuan, LI Ming, et al. Zero-waste emission design of sustainable and programmable actuators[J]. Sustainable Materials, 2023, 3(2): 207-221.
[18] XIONG Jiaqing, CHEN Jian, LEE Pooi See. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202002640.
[19] PAN C L, MA Y T, LIU Y B, et al. Torsional displacement of piezoelectric fiber actuators with helical electrodes[J]. Sensors and Actuators A: Physical, 2008, 148(1): 250-258.
[20] KHUDIYEV T, CLAYTON J, LEVY E, et al. Electrostrictive microelectromechanical fibres and textiles[J]. Nature Communications, 2017. DOI: 10.1038/s41467-017-01558-5.
[21] HAERTLING G H. Ferroelectric ceramics: history and technology[J]. Journal of the American Ceramic Society, 1999, 82(4): 797-818.
[22] LOVINGER A J. Ferroelectric polymers[J]. Science, 1983, 220(4602): 1115-1121.
pmid: 17818472
[23] LANG Tianhong, YANG Lixue, YANG Shiju, et al. Emerging innovations in electrically powered artificial muscle fibers[J]. National Science Review, 2024. DOI: 10.1093/nsr/nwae232.
[24] MIRVAKILI Seyed M, HUNTER Ian W. Artificial muscles: mechanisms, applications, and challen-ges[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201704407.
[25] HE Jin, CHEN Zheqi, XIAO Youhua, et al. Intrinsically anisotropic dielectric elastomer fiber actuators[J]. ACS Materials Letters, 2022, 4(3): 472-479.
[26] WANG Yulian, QIAO Jian, WU Kunjie, et al. High-twist-pervaded electrochemical yarn muscles with ultralarge and fast contractile actuations[J]. Materials Horizons, 2020, 7(11): 3043-3050.
[27] HU Hongwei, ZHANG Shengtao, ZHANG Mengyang, et al. Artificial muscles based on coiled conductive polymer yarns[J]. Advanced Functional Materials, 2024. DOI: 10.1002/adfm.202401685.
[28] MU Jiuke, JUNG DE ANDRADE Mônica, FANG Shaoli, et al. Sheath-run artificial muscles[J]. Science, 2019, 365(6449): 150-155.
doi: 10.1126/science.aaw2403 pmid: 31296765
[29] QIAO Jian, DI Jiangtao, ZHOU Susheng, et al. Large-stroke electrochemical carbon nanotube/graphene hybrid yarn muscles[J]. Small, 2018. DOI: 10.1002/smll.201801883.
[30] QIAO Jian, WU Yulong, ZHU Chengfeng, et al. High-performance carbon nanotube/polyaniline artificial yarn muscles working in biocompatible environments[J]. Nano Research, 2023, 16(3): 4143-4151.
[31] CHEN Peining, HE Sisi, XU Yifan, et al. Electromechanical actuator ribbons driven by electrically conducting spring-like fibers[J]. Advanced Materials, 2015, 27(34): 4982-4988.
doi: 10.1002/adma.201501731
[32] CHEN Yuanhao, VALENZUELA Cristian, LIU Yuan, et al. Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback[J]. Matter, 2024. DOI: 10.1016/j.matt.2024.10.022.
[33] CUI Bo, REN Ming, DONG Lizhong, et al. Pretension-free and self-recoverable coiled artificial muscle fibers with powerful cyclic work capability[J]. ACS Nano, 2023, 17(13): 12809-12819.
[34] 刘仁义, 杨琴, 孙宝忠, 等. 织物增强复合材料的电热驱动形状记忆回复行为[J]. 纺织学报, 2025, 46(1):72-79.
LIU Renyi, YANG Qin, SUN Baozhong, et al. Electrically and thermally driven shape memory recovery behavior of fabric-reinforced composites[J]. Journal of Textile Research, 2025, 46(1): 72-79.
[35] 付驰宇, 徐傲, 齐硕, 等. 形状记忆合金复合纱线及其面料驱动性能[J]. 纺织学报, 2023, 44(6): 91-97.
FU Chiyu, XU Ao, QI Shuo, et al. Shape memory alloy composite yarn and its fabric driving performance[J]. Journal of Textile Research, 2023, 44 (6): 91-97.
[36] HU Xinghao, JIA Jingjing, WANG Yingming, et al. Fast large-stroke sheath-driven electrothermal artificial muscles with high power densities[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202200591.
[37] WANG Xiaobo, WANG Yulian, REN Ming, et al. Knittable electrochemical yarn muscle for morphing textiles[J]. ACS Nano, 2024, 18(13): 9500-9510.
[38] YANG Zhangqin, WANG Yuting, LAN Lidan, et al. Bioinspired H-bonding connected gradient nanostructure actuators based on cellulose nanofibrils and graph-ene[J]. Small, 2024. DOI: 10.1002/smll.202401580.
[39] LIN Shihui, WANG Zhen, CHEN Xinyan, et al. Ultrastrong and highly sensitive fiber microactuators constructed by force-reeled silks[J]. Advanced Science, 2020. DOI: 10.1002/advs.201902743.
[40] LIU Dabiao, TARAKANOVA Anna, HSU Claire C, et al. Spider dragline silk as torsional actuator driven by humidity[J]. Science Advances, 2019. DOI: 10.1126/sciadv.aau9183eaau9183.
[41] LEE Youngbin, KOEHLER Florian, DILLON Tom, et al. Magnetically actuated fiber-based soft robots[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202301916.
[42] MAO Jiangwei, CHEN Zhaodi, HAN Dongdong, et al. Nacre-inspired moisture-responsive graphene actuators with robustness and self-healing properties[J]. Nanoscale, 2019, 11(43): 20614-20619.
doi: 10.1039/c9nr06579b pmid: 31641724
[43] LIU Fangfei, LIU Xiong, CHEN Feng, et al. Mussel-inspired chemistry: a promising strategy for natural polysaccharides in biomedical applications[J]. Progress in Polymer Science, 2021. DOI: 10.1016/j.progpolymsci.2021.101472.
[44] WANG Wen, XIANG Chenxue, LIU Qiongzhen, et al. Natural alginate fiber-based actuator driven by water or moisture for energy harvesting and smart controller applications[J]. Journal of Materials Chemistry A, 2018, 6(45): 22599-22608.
[45] TANG Gangqiang, ZHAO Xin, LIU Shilong, et al. Moisture-driven actuators[J]. Advanced Functional Materials, 2024. DOI: 10.1002/adfm.202412254.
[46] LEE Bruce P, KONST S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemis-try[J]. Advanced Materials, 2014, 26(21): 3415-3419.
[47] SONG Jianchun, CHEN Shuo, SUN Lijie, et al. Mechanically and electronically robust transparent organohydrogel fibers[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201906994.
[48] DOU Yuanyuan, WANG Zhen-Pei, HE Wenqian, et al. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-13257-4.
[49] YU Yadong, HE Yan, MU Zhao, et al. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201908556.
[50] CHU Crystal K, JOSEPH Alby J, LIMJOCO Matthew D, et al. Chemical tuning of fibers drawn from extensible hyaluronic acid networks[J]. Journal of the American Chemical Society, 2020, 142(46): 19715-19721.
doi: 10.1021/jacs.0c09691 pmid: 33141568
[51] SUN Jinkun, GUO Wenjin, MEI Guangkai, et al. Artificial spider silk with buckled sheath by nano-pulley combing[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202212112.
[52] HE Wenqian, WANG Meilin, MEI Guangkai, et al. Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles[J]. Nature Communications, 2024. DOI: 10.1038/s41467-024-47796-2.
[53] SHENG Nan, PENG Yangyang, SUN Fengxin, et al. High-performance fasciated yarn artificial muscles prepared by hierarchical structuring and sheath-core coupling for versatile textile actuators[J]. Advanced Fiber Materials, 2023, 5(4): 1534-1547.
[54] AZIZ Shazed, ZHANG Xi, NAFICY Sina, et al. Plant-like tropisms in artificial muscles[J]. Advanced Materials 2023. DOI: 10.1002/adma.202212046.
[55] ZHOU Jiahui, ZHANG Yufan, ZHANG Jiwei, et al. Breathable metal-organic framework enhanced humidity-responsive nanofiber actuator with autonomous triboelectric perceptivity[J]. ACS Nano, 2023, 17(18): 17920-17930.
doi: 10.1021/acsnano.3c04022 pmid: 37668183
[56] LANCIA F, RYABCHUN A, KATSONIS N. Life-like motion driven by artificial molecular machines[J]. Nature Reviews Chemistry, 2019, 3(9): 536-551.
doi: 10.1038/s41570-019-0122-2
[57] WU Mengjie, ZHOU Xinran, ZHANG Jiwei, et al. Microfiber actuators with hot-pressing programmable mechano photothermal responses for electromagnetic perception[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202409606.
[58] HE Qiguang, WANG Zhijian, WANG Yang, et al. Electrospun liquid crystal elastomer microfiber actuator[J]. Science Robotics, 2021. DOI: 10.1126/scirobotics.abi9704.
[59] CHENG Yin, WANG Ranran, CHAN Kwokhoe, et al. A biomimetic conductive tendril for ultrastretchable and integratable electronics, muscles, and sensors[J]. ACS Nano, 2018, 12(4): 3898-3907.
doi: 10.1021/acsnano.8b01372 pmid: 29584398
[60] ZHAO Hongtao, QI Xiangjun, MA Yulong, et al. Wearable sunlight-triggered bimorph textile actua-tors[J]. Nano Letters, 2021, 21(19): 8126-8134.
[61] CHEN Mengxiao, WANG Zhe, ZHANG Qichong, et al. Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing[J]. Nature Communications, 2021. DOI: 10.1038/s41467-021-21729-9.
[62] QU Yunpeng, NGUYEN-DANG Tung, PAGE Alexis GÉrald, et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201707251.
[63] KANIK Mehmet, ORGUC Sirma, VARNAVIDES Georgios, et al. Strain-programmable fiber-based artificial muscle[J]. Science, 2019, 365(6449): 145-150.
doi: 10.1126/science.aaw2502 pmid: 31296764
[64] LIU Luyun, ZHANG Yufan, WU Mengjie, et al. Asymmetric nanofiber photothermal interactive electronic skin with triboelectric autonomous thermal percep-tivity[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.109717.
[65] DONG Yue, WANG Jie, GUO Xukui, et al. Multi-stimuli-responsive programmable biomimetic actu-ator[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-12044-5.
[66] QI Miao, LIU Yanting, WANG Zhe, et al. Self-healable multifunctional fibers via thermal drawing[J]. Advanced Science, 2024. DOI: 10.1002/advs.202400785.
[67] LI Mingtong, TANG Yichao, SOON Ren Hao, et al. Miniature coiled artificial muscle for wireless soft medical devices[J]. Science Advances, 2022. DOI:10.1126/sciadv.abm5616.
[68] KIM Yoonho, YUK Hyunwoo, ZHAO Ruike, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558(7709): 274-279.
[69] JO C, PUGAL D, OH I, et al. Recent advances in ionic polymer-metal composite actuators and their modeling and applications[J]. Progress in Polymer Science, 2013, 38(7): 1037-1066.
[70] SINGH G, KRISHNAN G. Designing fiber-reinforced soft actuators for planar curvilinear shape matching[J]. Soft Robotics, 2020, 7(1): 109-121.
doi: 10.1089/soro.2018.0169 pmid: 31566502
[71] CONNOLLY F, POLYGERINOS P, WALSH C J, et al. Mechanical programming of soft actuators by varying fiber angle[J]. Soft Robotics, 2015, 2(1): 26-32.
[72] SANCHEZ V, MAHADEVAN K, OHLSON G, et al. 3D knitting for pneumatic soft robotics[J]. Advanced Functional Materials, 2023. DOI: 10.1002/adfm.202212541.
[73] DONG Lizhong, REN Ming, WANG Yulian, et al. Self-sensing coaxial muscle fibers with bi-lengthwise actuation[J]. Materials Horizons, 2021, 8(9): 2541-2552.
doi: 10.1039/d1mh00743b pmid: 34870310
[74] XU Chenxue, JIANG Zhenlin, WANG Baoxiu, et al. Biospinning of hierarchical fibers for a self-sensing actuator[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.150014.
[75] DONG Lizhong, REN Ming, WANG Yulian, et al. Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption[J]. Science Advances, 2022. DOI: 10.1126/sciadv.abq7703.
[76] LIAO Wei, YANG Zhongqiang. The integration of sensing and actuating based on a simple design fiber actuator towards intelligent soft robots[J]. Advanced Materials Technologies, 2022. DOI: 10.1002/admt.202101260.
[77] TAO Jin, ZHAO Weitao, ZHOU Xinran, et al. Robust all-fabric e-skin with high-temperature and corrosion tolerance for self-powered tactile sensing[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.109930.
[78] YANG Haitao, YEOW Bok Seng, LI Zhipeng, et al. Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities[J]. Science Robotics, 2019. DOI: 10.1126/scirobotics.aax7020.
[1] 李朵, 谢晓雯, 张迪凡, 吴景霞, 陆凯, 陈培宁. Wi-Fi双频织物天线的构建及其电磁性能[J]. 纺织学报, 2025, 46(05): 10-16.
[2] 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134.
[3] 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142.
[4] 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150.
[5] 张爱丹, 王倩. 三纬组合全显结构织物的颜色预测方法[J]. 纺织学报, 2025, 46(05): 151-158.
[6] 顾孟尚, 张宁, 潘如如, 高卫东. 结合频域卷积模块的机织物图像疵点目标检测[J]. 纺织学报, 2025, 46(05): 159-168.
[7] 孙晚红, 张鹏飞, 陈勇, 张林, 潘跃山, 宋飞虎, 刘恩星, 王玉萍. 智能发热服装用柔性碳纳米管电加热元件的制备及应用[J]. 纺织学报, 2025, 46(05): 17-22.
[8] 朱梦慧, 葛美彤, 董智佳, 丛洪莲, 马丕波. 纬编双面羊毛/涤纶交织物的结构与热湿性能评价[J]. 纺织学报, 2025, 46(05): 179-185.
[9] 魏志强, 刘新华. 耐热仿生结构色织物的制备及其性能[J]. 纺织学报, 2025, 46(05): 195-201.
[10] 张金芹, 李晶, 肖明, 毕曙光, 冉建华. 聚苯乙烯/还原氧化石墨烯微球传感电热织物的自组装法制备[J]. 纺织学报, 2025, 46(05): 202-213.
[11] 李吉国, 景军锋, 程为, 王永波, 刘薇. 基于机器视觉的玻璃纤维纱团外观缺陷检测系统设计[J]. 纺织学报, 2025, 46(05): 243-251.
[12] 李润, 常梓洋, 张如范. 碳纳米管功能纤维的可控制备与性能调控研究进展[J]. 纺织学报, 2025, 46(05): 30-40.
[13] 陈枭, 赵继忠, 董凯. 基于接触起电效应的新型机电转化纤维性能提升策略[J]. 纺织学报, 2025, 46(05): 41-48.
[14] 韩力杰, 刘樊, 张其冲. 纤维状水系锌离子电池的研究进展与展望[J]. 纺织学报, 2025, 46(05): 59-69.
[15] 张泽祺, 周涛, 周文琪, 范中尧, 杨佳蕾, 陈国印, 潘绍武, 朱美芳. 生理电信号监测用导电纤维及其研究进展[J]. 纺织学报, 2025, 46(05): 70-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!