纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 243-251.doi: 10.13475/j.fzxb.20240404501

• 机械与设备 • 上一篇    下一篇

基于机器视觉的玻璃纤维纱团外观缺陷检测系统设计

李吉国1, 景军锋1(), 程为2, 王永波3, 刘薇1   

  1. 1.西安工程大学 电子信息学院, 陕西 西安 710048
    2.西安获德图像技术有限公司, 陕西 西安 710048
    3.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
  • 收稿日期:2024-04-07 修回日期:2024-08-05 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 景军锋(1978—),男,教授,博士。主要研究方向为机器视觉与图像处理。E-mail:413066458@qq.com
  • 作者简介:李吉国(2000—),男,硕士生。主要研究方向为轻量化网络的工业图像缺陷检测。
  • 基金资助:
    国家自然科学基金项目(62176204);陕西省秦创原“科学家+工程师”项目(2023KXJ-061);西安市科技局秦创原“科学家+工程师”队伍建设项目(23KGDW0017-2022);陕西省教育厅科研计划资助项目(24JP070)

Design of machine vision-based system for detecting appearance defects in glass fiber yarn clusters

LI Jiguo1, JING Junfeng1(), CHENG Wei2, WANG Yongbo3, LIU Wei1   

  1. 1. School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Huode Image Technology Co., Ltd., Xi'an, Shaanxi 710048, China
    3. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2024-04-07 Revised:2024-08-05 Published:2025-05-15 Online:2025-06-18

摘要:

为解决玻璃纤维(简称玻纤)纱团在生产或运输过程中出现缺陷人工检测效率低和漏检率高的问题,提出一种基于机器视觉的玻纤纱团外观缺陷检测方法。该方法将传统图像算法和深度学习算法相结合,首先使用传统方法预处理图像,减少玻纤纱团塑料包装的反光对图像质量的影响,利用RGB与HSV色彩空间通道识别玻纤纱团型号标签;其次将疑似缺陷的玻纤纱团图像传入改进的MobileNetV2深度学习模型进行缺陷判定。最后设计了一套完整的玻纤纱团外观缺陷检测软硬件系统,以西门子S7-200 PLC作为硬件控制器,完成玻纤纱团检测过程中的自动传送与分拣,基于模型在线服务(EAS)架构设计了功能齐全的软件系统。研究结果表明,该系统的检测准确率为97%,玻纤纱团品种分类正确率达99%,相机采集和检测处理速度满足工业实际需求,能够有效代替人工并提高质检效率。

关键词: 机器视觉, 玻璃纤维纱团, 缺陷检测, 图像处理, 模型在线服务架构

Abstract:

Objective Glass fiber is widely used in transportation, shipbuilding, aerospace, construction, wind power, national defense equipment, leisure sports and other fields, and is stored in the form of glass fiber yarn clusters in the production and transportation process, so the quality monitoring of glass fiber yarn clusters is particularly important. However, conventional manual detection has disadvantages such as low efficiency, high missing detection, and long lag time. Therefore, a machine vision-based appearance defect detection system for glass fiber yarn was proposed and designed to meet the demand of the production line.
Method Based on the combination of conventional image algorithm and deep learning algorithm, firstly, the conventional method is adopted to preprocess the image, and the RGB and HSV color space channels are adopted to identify the model label of the glass fiber yarn clusters, and secondly, the suspected defective glass fiber yarn clusters image is transmitted to the improved MobileNetV2 deep learning model for defect judgment. Finally, a complete set of software and hardware system for the detection of appearance defects of glass fiber yarn clusters was designed, and the system used Siemens S7-200 PLC as the hardware controller to complete the automatic transmission and sorting of glass fiber yarn clusters in the process of detection.
Results The image data collected in the industrial field is used as a dataset sample, and the resolution of the upper end face image is 1 942 pixel×1 942 pixel, and the bottom end image resolution is 3 500 pixel×3 500 pixel. 3 000 normal samples, 25 847 defective samples, 1 000 images of red, yellow and blue varieties were selected for verification by the variety classification algorithm. In order to ensure that no detections are missed in the preclassification task, the parameter threshold is set as low as possible during the algorithm design, so that all images of suspected defects continue to be input to the subsequent deep learning model for further review. In the variety classification task, the recognition accuracy of each species reached 99%. In the follow-up defect review task, ResNet, AlexNet, VGG16 and MobileNetV2 models were experimented, respectively, and the overall classification accuracy reached about 95%, of which the classification accuracy of ResNet50 reached 96.12%, which was 0.62% higher than that of MobileNetV2, but its training time and model parameters were much larger than those of MobileNetV2. MobileNetV2 achieves a classification accuracy of 97.37%, which is 1.87% higher than the original model, proving the effectiveness of the improvement. On the whole, the proposed detection algorithm meets the requirements of the appearance defect detection system of glass fiber yarn clusters.
Conclusion A software and hardware system for the detection of appearance defects of glass fiber yarn clusters based on machine vision is proposed and designed. The conveyor mechanism controlled by the Siemens S7-200 PLC can be freely and conveniently embedded in the actual production line, and the multi-angle camera is adopted to collect the appearance image of the glass fiber yarn clusters during the conveying process. According to the requirements of production inspection, effective pretreatment, variety classification and defect detection algorithms were designed. The influence of the reflection effect of the plastic packaging on the surface of the glass fiber yarn clusters on the image feature extraction is solved, the image preprocessing method is designed to effectively reduce the computation amount of the system, and the proposed SA-MobileNetV2 lightweight deep learning model can meet the needs of the actual production line to detect and sort one glass fiber yarn clusters per 5 s on average. The system is simple to operate and has complete data, which helps enterprises to improve production processes and monitor product quality, and has broad engineering application value.

Key words: machine vision, glass fiber yarn, defect detection, image processing, elastic algorithm service framework

中图分类号: 

  • TP23

图1

玻纤纱团外观缺陷检测系统"

图2

玻纤纱团图像以及主要缺陷"

图3

玻纤纱团表面图像和加权平均灰度"

图4

直方图修正"

图5

玻纤纱团图像 注:标注尺寸单位为像素。"

图6

区域定位与分割流程框图"

图7

标签纸盘颜色识别与分类"

图8

缺陷初检方法流程"

图9

网络结构"

图10

主界面布局"

表1

实验数据集统计"

正常数量 异常类别数量 不同品种数量
错丝 异物 污渍
3 000 3 893 3 303 18 651 1 000 1 000 1 000

图11

缺陷预检与品种分类算法混淆矩阵"

表2

SA-MobileNetV2与主流分类网络对比"

对比模型 错丝Top1 异物Top1 污渍Top1 平均准确率/% 参数量×103 FP32模型大小/MB 分辨率/(帧·s-1)
ResNet-18[16] 95.83 91.52 98.04 95.12 11.7 44.6 484
ResNet-50[16] 96.85 93.55 97.98 96.12 25.6 97.8 298
AlexNet[17] 93.59 88.45 98.17 93.38 61.0 223.0 472
VGG16[18] 94.71 91.53 97.01 94.41 138.0 528.0 230
MobileNetV2[14] 95.05 92.91 98.56 95.50 3.4 13.6 579
SA-MobileNetV2 97.43 95.87 98.74 97.37 4.8 19.2 496
[1] 蔡洁, 王亮, 傅宏俊, 等. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(2): 111-117.
CAI Jie, WANG Liang, FU Hongjun, et al. Electromagnetic shielding properties of glass fiber/carbon fiber fabric matrix composites[J]. Journal of Textile Research, 2023, 44(2): 111-117.
[2] 吴雄, 蔡炜, 李健, 等. 电力纤维增强复合材料应用进展[J]. 复合材料科学与工程, 2021(11): 116-128.
doi: 10.19936/j.cnki.2096-8000.20211128.018
WU Xiong, CAI Wei, LI Jian, et al. Application progress of power fiber reinforced composites[J]. Composites Science and Engineering, 2021(11): 116-128.
doi: 10.19936/j.cnki.2096-8000.20211128.018
[3] 朱耀麟, 穆婉婉, 王进美, 等. 基于改进B-CNN模型的羊绒与羊毛纤维识别[J]. 西安工程大学学报, 2021, 35(6): 46-53.
ZHU Yaolin, MU Wanwan, WANG Jinmei, et al. Identification of cashmere and wool fibers based on improved B-CNN model[J]. Journal of Xi'an Polytechnic University, 2021, 35(6): 46-53.
[4] 纪越, 潘东, 马杰东, 等. 基于机器视觉的弦振动纱线张力非接触检测系统[J]. 纺织学报, 2023, 44(5): 198-204.
JI Yue, PAN Dong, MA Jiedong, et al. Non-contact testing system for string vibration yarn tension based on machine vision[J]. Journal of Textile Research, 2023, 44(5): 198-204.
[5] 李新荣, 韩鹏辉, 李瑞芬, 等. 数字孪生在纺纱领域应用的关键技术解析[J]. 纺织学报, 2023, 44(10): 214-222.
doi: 10.13475/j.fzxb.20220509002
LI Xinrong, HAN Penghui, LI Ruifen, et al. Analysis of key technologies for the application of digital twin in the field of spinning[J]. Journal of Textile Research, 2023, 44(10): 214-222.
doi: 10.13475/j.fzxb.20220509002
[6] 蔡兆信, 李瑞新, 戴逸丹, 等. 基于Faster RCNN的布匹瑕疵识别系统[J]. 计算机系统应用, 2021, 30(2): 83-88.
CAI Zhaoxin, LI Ruixin, DAI Yidan, et al. Fabric defect recognition system based on Faster RCNN[J]. Applications of Computer Systems, 2021, 30(2): 83-88.
[7] 王斌, 李敏, 雷承霖, 等. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(1): 219-227.
WANG Bin, LI Min, LEI Chenglin, et al. Research progress on fabric defect detection based on deep learning[J]. Journal of Textile Research, 2023, 44(1): 219-227.
[8] 黄汉林, 景军锋, 张缓缓, 等. 基于MF-SSD网络的织物疵点检测[J]. 棉纺织技术, 2020, 48(12): 11-16.
HUANG Hanlin, JING Junfeng, ZHANG Huanhuan, et al. Fabric defect detection based on MF-SSD network[J]. Cotton Textile Technology, 2020, 48(12): 11-16.
[9] 高敏, 邹阳林, 曹新旺. 基于改进YOLOv5模型的织物疵点检测[J]. 现代纺织技术, 2023, 31(4): 155-163.
GAO Min, ZOU Yanglin, CAO Xinwang. Fabric defect detection based on improved YOLOv5 model[J]. Advanced Textile Technology, 2023, 31(4): 155-163.
[10] 陈金广, 李雪, 邵景峰, 等. 改进YOLOv5网络的轻量级服装目标检测方法[J]. 纺织学报, 2022, 43(10): 155-160.
doi: 10.13475/j.fzxb.20210809306
CHEN Jinguang, LI Xue, SHAO Jingfeng, et al. Improved lightweight clothing object detection method for YOLOv5 network[J]. Journal of Textile Research, 2022, 43(10): 155-160.
doi: 10.13475/j.fzxb.20210809306
[11] FUJINOKI K, ASHIZAWA K. Directional lifting wavelet transform for image edge analysis[J]. Signal Processing, 2024. DOI: 10.1016/j.sigpro.2023.109188.
[12] MURSHED M G S, MURPHY C, HOU D, et al. Machine learning at the network edge: a survey[J]. ACM Computing Surveys (CSUR), 2021, 54(8): 1-37.
[13] HUANG M, LIU Y, YANG Y. Edge detection of ore and rock on the surface of explosion pile based on improved Canny operator[J]. Alexandria Engineering Journal, 2022, 61(12): 10769-10777.
[14] KARADAL C H, KAYA M C, TUNCER T, et al. Automated classification of remote sensing images using multileveled MobileNetV2 and DWT techniques[J]. Expert Systems with Applications, 2021. DOI:10.1016/j.eswa.2021.115659.
[15] ZHANG H, WU C, ZHANG Z, et al. Resnest: split-attention networks[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New orleans: IEEE. 2022: 2736-2746.
[16] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. las vegas: IEEE. 2016: 770-778.
[17] KRIZHEVSKY A, SUSTKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recogn-ition[J]. ArXiv. 2014. DOI: 10.48550/arXiv:1409.1556,2014.
[1] 马运娇, 王蕾, 潘如如. 基于双斜交平面镜的纱线条干三维仿真[J]. 纺织学报, 2025, 46(02): 86-91.
[2] 任柯, 周衡书, 魏瑾瑜, 闫文君, 左言文. 基于机器视觉技术的百褶裙动态美感评价[J]. 纺织学报, 2024, 45(12): 189-198.
[3] 任佳伟, 周其洪, 陈唱, 洪巍, 岑均豪. 基于机器视觉的交叉缠绕式筒子纱位姿检测方法[J]. 纺织学报, 2024, 45(11): 207-214.
[4] 蒋静, 彭来湖, 史伟民, 袁豪伟. 基于奇异值分解算法的非接触纱线张力测量[J]. 纺织学报, 2024, 45(09): 204-211.
[5] 周其洪, 陈唱, 任佳伟, 洪巍, 岑均豪. 基于改进凸包缺陷算法的扎带定位方法[J]. 纺织学报, 2024, 45(09): 212-219.
[6] 陈育帆, 郑小虎, 徐修亮, 刘冰. 基于机器视觉的缝纫线迹缺陷检测方法[J]. 纺织学报, 2024, 45(07): 173-180.
[7] 文嘉琪, 李新荣, 冯文倩, 李瀚森. 印花面料的边缘轮廓快速提取方法[J]. 纺织学报, 2024, 45(05): 165-173.
[8] 庹武, 杜聪, 陈谦, 吴超, 魏新桥, 张欣汝, 刘思雨. 基于计算机视觉与Canny算法的服装纸样轮廓提取[J]. 纺织学报, 2024, 45(05): 174-182.
[9] 杨金鹏, 景军锋, 李吉国, 王渊博. 基于机器视觉的玻璃纤维合股纱缺陷检测系统设计[J]. 纺织学报, 2024, 45(05): 193-201.
[10] 白恩龙, 张周强, 郭忠超, 昝杰. 基于机器视觉的棉花颜色检测方法[J]. 纺织学报, 2024, 45(03): 36-43.
[11] 葛苏敏, 林瑞冰, 徐平华, 吴思熠, 罗芊芊. 基于机器视觉的曲面枕个性化定制方法[J]. 纺织学报, 2024, 45(02): 214-220.
[12] 史伟民, 韩思捷, 屠佳佳, 陆伟健, 段玉堂. 基于机器视觉的空纱筒口定位方法[J]. 纺织学报, 2023, 44(11): 105-112.
[13] 戴宁, 梁汇江, 胡旭东, 戚栋明, 徐郁山, 屠佳佳, 史伟民. 插管式机器人空管状态检测方法[J]. 纺织学报, 2023, 44(11): 199-207.
[14] 陈罡, 金贵阳, 吴菁, 罗千. 智能服装缝制关键技术及成套装备研发[J]. 纺织学报, 2023, 44(08): 197-204.
[15] 陈泰芳, 周亚勤, 汪俊亮, 徐楚桥, 李冬武. 基于视觉特征强化的环锭纺细纱断头在线检测方法[J]. 纺织学报, 2023, 44(08): 63-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!