纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 59-69.doi: 10.13475/j.fzxb.20241104702
HAN Lijie, LIU Fan(
), ZHANG Qichong
摘要:
纤维状锌离子电池(FAZIBs)在推动智能纤维材料及智能可穿戴纺织品的发展中具有重要作用。为推动其在智能可穿戴设备中的高效应用,系统梳理了FAZIBs的基本工作原理、研究现状及未来发展趋势。首先,阐述了FAZIBs的储锌机制,并对FAZIBs的材料选择进行了深入讨论,包括锰基、钒基、普鲁士蓝类似物及有机材料,同时分析了这些材料对电池性能的直接影响;介绍了纤维电极的3种核心制备技术:原位生长技术、表面涂覆技术和湿法纺丝技术。同时,系统性地描述了FAZIBs的3种典型器件结构:平行结构、缠绕结构和同轴结构,并分析了这些结构对电池性能、稳定性和可穿戴性的影响。最后,针对FAZIBs在智能可穿戴设备中的应用挑战及未来发展方向,明确了多功能化、可扩展性和大规模生产等关键问题,并提出了未来的研究重点,包括提升能量密度、延长电池寿命以及增强器件稳定性,以促进FAZIBs在智能可穿戴纺织品领域的广泛应用。
中图分类号:
| [1] | HE Jiqing, LU Chenhao, JIANG Haibo, et al. Scalable production of high-performing woven lithium-ion fiber batteries[J]. Nature, 2021, 597(7874): 57-63. |
| [2] | JIA Hao, WANG Ziqi, TAWIAH Benjammin, et al. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.104523. |
| [3] | WANG Ziqi, HUANG Weiyuan, JIA Chuanhua, et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries[J]. Small Methods, 2020. DOI: 10.1002/smtd.202000082. |
| [4] | YUN Junyeong, KIM Daeil, LEE Geumbee, et al. All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes.[J]. Carbon, 2014, 79: 156-164. |
| [5] | DUAN Jiangjiang, XIE Wenke, YANG Peihua, et al. Tough hydrogel diodes with tunable interfacial adhesion for safe and durable wearable batteries[J]. Nano Energy, 2018, 48: 569-574. |
| [6] | ZHU Bin, JIN Yan, HU Xiaozhen, et al. Poly (dimethyl-siloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201603755. |
| [7] | ZENG Yinxiang, ZHANG Xiyue, MENG Yue, et al. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201700274. |
| [8] |
LI Hongfei, MA Longtao, HAN Cuiping, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587.
doi: 10.1016/j.nanoen.2019.05.059 |
| [9] | KWON Yohan, WOO Sang Wook, JUNG Hye Ran, et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes.[J]. Advanced Materials, 2012. DOI: 10.1002/adma.201202196. |
| [10] | REN Jing, ZHANG Ye, BAI Wenyu, et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance[J]. Angewandte Chemie International Edition, 2014, 126:7998-8003. |
| [11] |
FANG Xin, WENG Wei, REN Jing, et al. A cable-shaped lithium sulfur battery: advanced materials[J]. Advanced Materials, 2016, 28(3): 491-496.
doi: 10.1002/adma.201504241 |
| [12] | ZHOU Jingwen, LI Xuelian, YANG Chao, et al. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201804439. |
| [13] |
SONG Chenhui, LI Yongpeng, LI Hui, et al. A novel flexible fiber-shaped dual-ion battery with high energy density based on omnidirectional porous Al wire anode[J]. Nano Energy, 2019, 60: 285-293.
doi: 10.1016/j.nanoen.2019.03.062 |
| [14] | YANG Jiao, WANG Zhe, WANG Zhixun, et al. All-metal phosphide electrodes for high-performance quasi-solid-state fiber-shaped aqueous rechargeable Ni-Fe batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12801-12808. |
| [15] | LIU Fan, LI Lei, XU Shuhong, et al. Cobalt-doped MoS2·nH2O nanosheets induced heterogeneous phases as high-rate capability and long-term cyclability cathodes for wearable zinc-ion batteries[J]. Energy Storage Materials, 2023.DOI: 10.1016/j.ensm.2022.11.034. |
| [16] |
CHEN Xuyong, WANG Liubin, LI Hang, et al. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2019, 38: 20-25.
doi: 10.1016/j.jechem.2018.12.023 |
| [17] | VOLKOV A I, SHARLAEV A S, BEREZINA O YA, et al. Electrospun V2O5 nanofibers as high-capacity cathode materials for zinc-ion batteries[J]. Materials Letters, 2022.DOI: 10.1016/j.matlet.2021.131212. |
| [18] | TIAN Yuan, AN Yongling, WEI Chuanliang, et al. Recent advances and perspectives of Zn-metal free ″rocking-chair″-type Zn-ion batteries[J]. Advanced Energy Materials, 2021.DOI: 10.1002/aenm.202002529. |
| [19] | YADAV Priya, KUMARI Nisha, RAI Alokkumar. A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries[J]. Journal of Power Sources, 2023.DOI: 10.1016/j.jpowsour.2022.232385. |
| [20] |
JIA Xiaoxiao, LIU Chaofeng, NEALE Zachary G, et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15): 7795-7866.
doi: 10.1021/acs.chemrev.9b00628 pmid: 32786670 |
| [21] | PAOLELLA Andrea, FAURE Cyril, TIMOSHEVSKII Vladimir, et al. A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives[J]. Journal of Materials Chemistry A, 2017, 5(36): 18919-18932. |
| [22] |
NAM Kwanwoo W, KIM Heejin, BELDJOUDI Yassine, et al. Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries[J]. Journal of the American Chemical Society, 2020, 142(5): 2541-2548.
doi: 10.1021/jacs.9b12436 pmid: 31895548 |
| [23] | ZHANG Ning, CHENG Fangyi, LIU Junxiang, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communication, 2017, 8(1): 1-9. |
| [24] | XU Chengjun, LI Baohua, DU Hongda, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935. |
| [25] | PAN Huilin, SHAO Yuyan, YAN Pengfei, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016, 1(5):1-7. |
| [26] |
GAO Tingting, YAN Guangyuan, YANG Xin, et al. Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage[J]. Journal of Energy Chemistry, 2022, 71: 192-200.
doi: 10.1016/j.jechem.2022.02.040 |
| [27] | XU Ziming, WANG Jiwei, ZHANG Wenyuan, et al. Hydrogen-bond chemistry inhibits Jahn-Teller distortion caused by Mn 3d orbitals for long-lifespan aqueous Zn//MnO2 batteries[J]. Journal of Materials Chemistry A, 2024, 12(37): 25491-25503. |
| [28] | WANG L, ZHENG J. Recent advances in cathode materials of rechargeable aqueous zinc-ion batte-ries[J]. Materials Today Advances, 2020.DOI: 10.1016/j.mtadv.2020.100078. |
| [29] | TANG Han, PENG Zhou, WU Lu, et al. Vanadium-based cathode materials for rechargeable multivalent batteries: challenges and opportunities[J]. Electrochemical Energy Reviews, 2018, 1(2): 169-199. |
| [30] | WAN Fang, NIU Zhiqiang. Design strategies for vanadium-based aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58(46): 16508-16517. |
| [31] | ZHANG Ning, DONG Yang, JIA Ming, et al. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life[J]. ACS Energy Letters, 2018, 3(6): 1366-1372. |
| [32] | GUO Jiabin, HE Bin, GONG Wwenbin, et al. Emerging amorphous to crystalline conversion chemistry in Ca-doped VO2 cathodes for high-capacity and long-term wearable aqueous zinc-ion batteries[J]. Advanced Materials, 2024.DOI: 10.1002/adma.202303906. |
| [33] | LIU Zhen, PULLETIKURTHI Giridhar, ENDRES Frank. A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte[J]. ACS Applied Materials & Interface, 2016, 8(19): 12158-12164. |
| [34] | MA Haolun, CHEN Ruiyong, LIU Binbin, et al. Synthesis of ultrasmall vanadium ferricyanide nanocrystallines with the aidance of graphene self-assembled fibers towards reinforced zinc storage performance[J]. Chemical Engineering Journal, 2024.DOI: 10.1016/j.cej.2024.151112. |
| [35] | WANG Liubin, LIU Ningbo, LI Qiaqia, et al. Dual redox reactions of silver hexacyanoferrate Prussian blue analogue enable superior electrochemical performance for zinc-ion storage[J]. Angewandte Chemie International Edition, 2024.DOI: 10.1002/ange.202416392. |
| [36] | ZHANG Haozhe, XIONG Ting, ZHOU Tianzhu, et al. Advanced fiber-shaped aqueous zn ion battery integrated with strain sensor[J]. ACS Applied Materials & Interface, 2022, 14(36): 41045-41052. |
| [37] |
LI Hongfei, LIU Zhuoxin, LIANG Guojin, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electr-olyte[J]. ACS Nano, 2018, 12(4): 3140-3148.
doi: 10.1021/acsnano.7b09003 pmid: 29589438 |
| [38] |
PAN Zhenghui, YANG Jie, YANG Jin, et al. Stitching of Zn3(OH)2V2O7·2H2O 2D nanosheets by 1D carbon nanotubes boosts ultrahigh rate for wearable quasi-solid-state zinc-ion batteries[J]. ACS Nano, 2020, 14(1): 842-853.
doi: 10.1021/acsnano.9b07956 pmid: 31869204 |
| [39] | YANG Jiao, CHEN Jingwei, WANG Zhe, et al. Recent advances and prospects of fiber-shaped rechargeable aqueous alkaline batteries[J]. Advanced Energy and Sustainability Research, 2021.DOI: 10.1002/aesr.202100060. |
| [40] | WU Guan, SUN Suya, ZHU Xiaolin, et al. Microfluidic fabrication of hierarchical-ordered ZIF-L(Zn)@Ti3C2T core-sheath fibers for high-performance asymmetric supercapacitors[J]. Angewandte Chemie International Edition, 2022.DOI: 10.1002/ange.202115559. |
| [41] | QIU Hui, WU Xingjiang, HONG Ri, et al. Microfluidic-oriented synthesis of graphene oxide nanosheets toward high energy density super-capacitors[J]. Energy & Fuels, 2020, 34(9): 11519-11526. |
| [42] | WU Guan, MA Ziyang, WU Xingjiang, et al. Interfacial polymetallic oxides and hierarchical porous core-shell fibres for high energy-density electrochemical supercapacitors[J]. Angewandte Chemie International Edition, 2022.DOI: 10.1002/anie.202203765. |
| [43] | YANG Lijun, PAN Liang, XIANG Hengxue, et al. Organic-inorganic hybrid conductive network to enhance the electrical conductivity of graphene-hybridized polymeric fibers[J]. Chemistry of Materials, 2022, 34(5): 2049-2058. |
| [44] | WANG Xiaochun, CHEN Guangxue, CAI Ling, et al. Weavable transparent conductive fibers with harsh environment tolerance[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8952-8959. |
| [45] | EOM Wonsik, SHIN Hwansoo, AMBADE RohanB, et al. Large-scale wet-spinning of highly electroconductive MXene fibers[J]. Nature Communications, 2020.DOI: 10.1038/s41467-020-16671-1. |
| [46] | FANG Bo, YAN Jianmin, CHANG Dan, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors[J]. Nature Communications, 2022.DOI: 10.1038/s41467-022-29773-9. |
| [47] | YU Xiao, FU Yongping, CAI Xin, et al. Flexible fiber-type zinc-carbon battery based on carbon fiber electr-odes[J]. Nano Energy, 2013, 2(6): 1242-1248. |
| [48] | LI Qiulong, ZHANG Qichong, ZHOU Zhengyu, et al. Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries[J]. Nano Research, 2020, 14(1): 91-99. |
| [49] |
ZHANG Qichong, LI Chaowei, LI Qiulong, et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery[J]. Nano Letters, 2019, 19(6): 4035-4042.
doi: 10.1021/acs.nanolett.9b01403 pmid: 31082244 |
| [50] | LI Chaowei, WANG Wenhui, LUO Jie, et al. High-fluidity/high-strength dual-layer gel electrolytes enable ultra-flexible and dendrite-free fiber-shaped aqueous zinc metal battery[J]. Advanced Materials, 2024.DOI: 10.1002/adma.202313772. |
| [51] |
LIU Fan, XU Shuhong, GONG Wenbin, et al. Fluorescent fiber-shaped aqueous zinc-ion batteries for bifunctional multicolor-emission/energy-storage textiles[J]. ACS Nano, 2023, 17(18): 18494-18506.
doi: 10.1021/acsnano.3c06245 pmid: 37698337 |
| [52] | DING Bin, TANG Jinhao, WANG Zingqian, et al. A high-capacity yarn-shaped Zn-MnO2 battery for wearable electronics[J]. Physicochemical and Engineering Aspects, 2025.DOI: 10.1016/j.colsurfa.2025.136357. |
| [53] | CHENG Jiazhe, JIANG Shouxiang, JIA Hao. Fiber-shaped aqueous zinc ion batteries for wearable energy solutions[J]. Sustainable Energy & Fuels, 2024(18): 4164-4167. |
| [54] | WANG Guoyuan, LI Guoxin, TANG Yudong, et al. Flexible and antifreezing fiber-shaped solid-state zinc-ion batteries with an integrated bonding structure[J]. The Journal of Physical Chemistry Letters, 2023(14): 3512-3520. |
| [1] | 刘烨, 王俊胜, 金星. 消防员个人防护装备用智能纺织品研究进展[J]. 纺织学报, 2025, 46(05): 105-115. |
| [2] | 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134. |
| [3] | 陈枭, 赵继忠, 董凯. 基于接触起电效应的新型机电转化纤维性能提升策略[J]. 纺织学报, 2025, 46(05): 41-48. |
| [4] | 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51. |
| [5] | 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24. |
| [6] | 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233. |
| [7] | 周奉凯, 李沂蒙, 彭佳敏, 毛吉富, 王璐. 用于增强海水淡化性能的聚吡咯功能化废旧织物[J]. 纺织学报, 2024, 45(11): 153-161. |
| [8] | 杨辰晖, 陈檬迪, 关艳, 肖红. 基于光栅动画图案合成光纤织物的设计及其实现[J]. 纺织学报, 2024, 45(07): 40-46. |
| [9] | 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238. |
| [10] | 董凯, 吕天梅, 盛非凡, 彭晓. 面向个性化健康医疗的智能纺织品研究进展[J]. 纺织学报, 2024, 45(01): 240-249. |
| [11] | 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170. |
| [12] | 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95. |
| [13] | 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142. |
| [14] | 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134. |
| [15] | 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86. |
|
||