纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 125-134.doi: 10.13475/j.fzxb.20240503701

• 纤维材料 • 上一篇    下一篇

芳纶纳米纤维/MXene同轴纤维电极制备及其性能

孙洁(), 郭羽晴, 屈芸, 张利平   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2024-05-16 修回日期:2024-10-12 出版日期:2025-05-15 发布日期:2025-06-18
  • 作者简介:孙洁(1979—),女,副教授,博士。主要研究方向为储能复合材料。E-mail: sunjie@jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金项目(51903109)

Preparation and performance of aramid nanofibers/MXene coaxial fiber electrodes

SUN Jie(), GUO Yuqing, QU Yun, ZHANG Liping   

  1. Colloge of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2024-05-16 Revised:2024-10-12 Published:2025-05-15 Online:2025-06-18

摘要:

为充分利用芳纶纳米纤维(ANFs)的骨架增强作用,进一步提高纤维电极的力学实用性,结合同轴纤维的结构优势,采用ANFs与ANFs/MXene质量比为1:4的ANFs/MXene(AM)共混物分别作为单(核/壳)层材料,通过调整ANFs增强骨架的分布位置及含量设计制备了不同系列的同轴纤维,并对其微观结构、力学性能、电学性能以及电化学性能进行分析。结果表明:对于ANFs为壳层、AM共混物为核层的同轴纤维,样品壳层质量分数为0.7%ANFs、核层为AM共混物时断裂强度和模量分别可达98.57 MPa、5.25 GPa,比ANFs与MXene质量比为1:4时的复合纤维分别提高了99.37%、15.89%;同时,得益于法拉第反应与赝电容反应协同作用,在0.2 A/g的电流密度下,以样品壳层质量分数为0.5%ANFs、核层为AM的共混物比电容最为突出,可达337.41 F/g。对于AM共混物为壳层、ANFs为核层的同轴纤维,样品核层质量分数为1.5%时其力学强度和模量分别为110.98 MPa、5.28 GPa,较ANFs与MXene质量比为1:4时的复合纤维分别提高了124.47%、16.53%;且其呈电池型电极特性,比电容可达120.10 F/g。

关键词: MXene, 芳纶纳米纤维, 电极材料, 纤维电极, 超级电容器

Abstract:

Objective MXene and aramid nanofibers (ANFs) have similar surface polarity and good compatibility. Preliminary experiments show that with an optimal blend ratio of ANFs to MXene, excellent wet spinning processability and good conductivity can be achieved. When the mass ratio of ANFs to MXene is 1:4, the conductivity of A1M4 (with a mass ratio of ANFs to MXene at 1:4)composite fibers produced by wet spinning can reach 3 145.82 S/m. However, the fiber strength is not yet ideal for practical applications. Coaxial wet spinning has better designability compared to the conventional wet spinning. In order to fully leverage the advantages of the excellent skeleton reinforcement performance of ANFs, further balance the contradiction between the electrical and mechanical properties of ANFs/MXene fibers, and to improve the comprehensive performance of fiber electrodes, 1:4 blend ratio of ANFs to ANFs/MXene was adopted to prepare single (core/shell) layer materials, through adjusting the distribution position and concentration of ANFs reinforced skeleton by wet spinning forming method. A flexible fiber electrode with excellent mechanical and electrochemical comprehensive properties was designed and prepared, aiming for applications in the field of flexible supercapacitor energy storage.
Method A series of coaxial fiber electrodes was designed and parepared using the wet spinning method. By systematically analyzing the microscopic physical and chemical structures, mechanical properties, electrical and electrochemical properties of various coaxial fiber electrode samples, the feasibility of this technology approach in designing and preparing flexible fiber electrodes was explored.
Results For A-AM (coaxial fibers with ANFs as shell layer and ANFs/MXene composites as core layer) coaxial fibers, by adjusting the concentration of shell ANFs, it was found that when increasing the concentration of shell ANFs, the compactness of the shell aggregation structure was increased, the mechanical strength was improved, but the conductivity was decreased. Among them, the sample A-0.7-AM (coaxial fiber with a concentration of shell ANFs at 0.7%) demonstrated that failure strength and modulus reached 98.57 MPa and 5.25 GPa, respectively, which are 99.37% and 15.89% higher than those of A1M4 composite fibers. As for A-AM coaxial fibers, ANF fiber bundles were found partially "overflowing" to the shell layer in all samples, which blocked the AM conductive pathway in the shell layer to a certain extent. The conductivity was reduced to varying degrees compared to A1M4 composite fibers, but it was indeed beneficial for improving mechanical strength. Among them, the mechanical strength and modulus for AM-A-1.5 (coaxial fiber with a concentration of core ANFs at 1.5%) were 110.98 MPa and 5.28 GPa, respectively, representing an increase of 124.47% and 16.53% compared to A1M4 composite fibers. The electrochemical performance tests indicated that at a current density of 0.2 A/g, the specific capacitance is the most prominent for sample A-0.5-AM (coaxial fiber with a concentration of shell (ANFs at 0.5%), reaching 310.59 F/g. Sample AM-A-1.5 exhibited battery type electrode characteristics, with a specific capacitance of up to 120.10 F/g.
Conclusion A series of coaxial fiber electrodes were prepared using AM blends with a ratio of 1:4 of ANFs to ANFs/MXene as single (core/shell) layer materials. By adjusting the distribution position and concentration of ANFs reinforced skeleton, the synergistic effect of the materials was well exerted, balancing the contradiction between mechanical, electrical, and electrochemical properties, and demonstrating good application prospects.

Key words: MXene, aramid nanofiber, electrode material, fiber electrode, supercapacitor

中图分类号: 

  • TB34

图1

同轴湿法纺丝组装复合纤维示意图"

表1

设计制备同轴纤维样品种类"

类别编号 调控因素 样品名称 壳层 核层
A-AM 壳层ANFs
质量分数
A-0.7-AM 0.7% ANFs A1M4
A-0.5-AM 0.5% ANFs
A-0.3-AM 0.3% ANFs
AM-A 核层ANFs
质量分数
AM-A-0.5 A1M4 0.5% ANFs
AM-A-1.0 1.0% ANFs
AM-A-1.5 1.5% ANFs

图2

不同壳层ANFs质量分数所制A-AM同轴纤维的SEM照片"

图3

不同核层ANFs质量分数所制AM-A同轴纤维的SEM照片"

图4

AM-A-1.0同轴纤维元素分布情况"

图5

AM-A-1.0同轴纤维和A-0.5-AM同轴纤维微观化学结构"

图6

各同轴纤维的力学性能"

图7

各同轴纤维样品的电导率和电阻 注:柱状图为样品电导率;点线图为样品电阻。"

图8

各同轴纤维样品的电化学性能"

[1] XU Shuaikai, WEI Guodong, LI Junzhi, et al. Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method[J]. Chemical Engineering Journal, 2017, 317: 1026-1036.
[2] HU Minmin, HU Tao, CHENG Renfei, et al. MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application[J]. Journal of Energy Chemistry, 2018, 27(1): 161-166.
doi: 10.1016/j.jechem.2017.10.030
[3] 祝超. 基于二维Ti3C2纳米片组装宏观纤维及其柔性超级电容器应用的研究[D]. 苏州: 苏州大学, 2020: 4-6.
ZHU Chao. Research on the assembly of macroscopic fibers based on two-dimensional Ti3C2 nanosheets and their application in flexible supercapacitors[D]. Suzhou: Soochow University, 2020: 4-6.
[4] 成丽媛. PAN/MXene复合电极材料的制备及超级电容器性能研究[D]. 无锡: 江南大学, 2022: 8-9.
CHENG Liyuan. Preparation of PAN/MXene composite electrode materials and study on their supercapacitor performance[D]. Wuxi: Jiangnan University, 2022: 8-9.
[5] 赵颖会, 武辰爽, 王亚洲, 等. MXene改性纺织品在柔性应变传感领域研究进展[J]. 纺织高校基础科学学报, 2022, 35(1):48-60.
ZHAO Yinghui, WU Chenshuang, WANG Yazhou, et al. Research progress in mxene-modified textiles for flexible strain sensing applications[J]. Basic Science Journal of Textile Universities, 2022, 35(1): 48-60.
[6] 贾峰峰. MXene/ANFs电磁屏蔽材料的制备及其性能研究[D]. 西安: 陕西科技大学, 2021: 5-6.
JIA Fengfeng. Preparation and performance study of mxene/anfs electromagnetic shielding materials[D]. Xi'an: Shaanxi University of Science & Technology, 2021: 5-6.
[7] 杨斌. 芳纶纳米纤维高效制备及其在纸基绝缘材料中的应用[D]. 西安: 西北工业大学, 2019: 1-5.
YANG Bin. Efficient preparation of aramid nanofibers and their application in paper-based insulating mater-ials[D]. Xi'an: Northwestern Polytechnical University, 2019: 1-5.
[8] YANG Zhengpeng, ZHAO Wei, NIU Yutao, et al. Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath struc-ture[J]. Carbon, 2018, 132: 241-248.
[9] KOU Liang, HUANG Tieqi, ZHENG Bingna, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics[J]. Nature Communications, 2014. DOI:10.1038/ncomms47594759.
[10] 曹文鑫. 芳纶纳米纤维/碳纳米管复合材料的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 35-36.
CAO Wenxin. Preparation and performance study of aramid nanofiber/carbon nanotube composites[D]. Harbin: Harbin Institute of Technology, 2019: 35-36.
[11] ZHANG Xiang, WANG Anping, ZHOU Xiaoyao, et al. Fabrication of aramid nanofiber-wrapped graphene fibers by coaxial spinning[J]. Carbon, 2020(165):340-348.
[12] 阮英鹏. 超级电容器用石墨烯/聚丙烯腈同轴纤维电极的制备与性能研究[D]. 上海: 东华大学, 2021: 18-19.
RUAN Yingpeng. Preparation and performance study of graphene/polyacrylonitrile coaxial fiber electrodes for supercapacitors[D]. Shanghai: Donghua University, 2021: 18-19.
[13] YANG Peihua, MAI Wenjie. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy, 2014, 8: 274-290.
[14] WANG Jianqiao, LIU Lei, JIAO Songlong, et al. Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202002595.
[15] EPP J. X-ray diffraction (XRD) techniques for materials characterization: materials charac-terization using nondestructive evaluation (NDE) methods[M]. Woodhead Publishing, 2016: 81-124.
[16] 王雨. MXene/纤维素柔性导电复合薄膜的构筑及其性能研究[D]. 西安: 陕西科技大学, 2023: 22-23.
WANG Yu. Construction and performance study of MXene/cellulose flexible conductive composite films[D]. Xi'an: Shaanxi University of Science & Technology, 2023: 22-23.
[17] 韩美康. 二维吸波材料的微结构设计及电磁特性研究[D]. 西安: 西北工业大学, 2018: 61-62.
HAN Meikang. Microstructural design and electromagnetic properties study of two-dimensional microwave absorbing materials[D]. Xi'an: Northwestern Polytechnical University, 2018: 61-62.
[18] 程仁飞. 迈科雉(MXene)的表面修饰、掺杂及其电化学性能研究[D]. 合肥: 中国科学技术大学, 2020: 67-69.
CHENG Renfei. Surface modification, doping, and electrochemical performance study of MXene[D]. Hefei: University of Science and Technology of China, 2020: 67-69.
[19] 关云锋. 钛基双过渡金属MXenes柔性电极的构筑及储能机制研究[D]. 武汉: 武汉科技大学, 2023:25-28.
GUAN Yunfeng. Construction and energy storage mechanism study of titanium-based dual transition metal MXenes flexible electrodes[D]. Wuhan: Wuhan University of Science and Technology, 2023:25-28.
[20] GUO Ying, ZHANG Deyang, YANG Ya, et al. MXene-encapsulated hollow Fe3O4 nanochains embedded in N-doped carbon nanofibers with dual electronic pathways as flexible anodes for high-performance Li-ion batteries[J]. Nanoscale, 2021, 13(8): 4624-4633.
doi: 10.1039/d0nr09228b pmid: 33605964
[21] SARCHEVA A, GOGOTSI Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene[J]. Chemistry of Materials, 2020, 32(8): 3480-3488.
[22] YANG Bin, WANG Lin, ZHANG Meiyun, et al. Timesaving, high-efficiency approaches to fabricate aramid nanofibers[J]. ACS Nano, 2019, 13(7): 7886-7897.
doi: 10.1021/acsnano.9b02258 pmid: 31244045
[23] ADAR, Fran. Molecular spectroscopy workbench: depth resolution of the raman microscope: optical limitations and sample characteristics[J]. Spectroscopy, 2010, 25(3): 16-23.
[24] 李念, 郭为民, 沈思静, 等. NiMn-LDH/MnMoO4/CC柔性复合电极的制备及其赝电容性能[J]. 纺织高校基础科学学报, 2023, 36(6): 2-60,75.
LI Nian, GUO Weimin, SHEN Sijing, et al. Preparation and pseudocapacitive performance of NiMn-LDH/MnMoO4/CC flexible composite electrode[J]. Basic Science Journal of Textile Universities, 2023, 36(6): 52-60,75.
[25] ZHAO Xiaoyu, ZHANG Yingbin, WANG Yanfei, et al. Battery-type electrode materials for sodium-ion capac-itors[J]. Batteries & Supercaps, 2019, 2(11): 899-917.
[26] CAO Wei, LIU Yu, XU Fang, et al. In situ electrochemical synthesis of rod-like Ni-MOFs as battery-type electrode for high performance hybrid supercapacitor[J]. Journal of The Electrochemical Society, 2019. DOI: 10.1149/2.0072005JES.
[27] OKHAY O, TKACH A. Graphene/reduced graphene oxide-carbon nanotubes composite electrodes: from capacitive to battery-type behaviour[J]. Nanomaterials, 2021. DOI:10.3390/nano11051240.
[1] 韩力杰, 刘樊, 张其冲. 纤维状水系锌离子电池的研究进展与展望[J]. 纺织学报, 2025, 46(05): 59-69.
[2] 郭羽晴, 屈芸, 张利平, 孙洁. 芳纶纳米纤维制备及其可纺性[J]. 纺织学报, 2025, 46(04): 1-10.
[3] 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25.
[4] 李万新, 舒大武, 安芳芳, 韩博, 任支刚, 单巨川. 碳化钛与三价铁离子协同过硫酸钠对活性染料废水的降解[J]. 纺织学报, 2025, 46(01): 138-147.
[5] 关玉, 王冬, 郭一凡, 付少海. MoS2/MXene阻燃气敏棉织物的制备及其性能[J]. 纺织学报, 2024, 45(12): 159-165.
[6] 周奉凯, 李沂蒙, 彭佳敏, 毛吉富, 王璐. 用于增强海水淡化性能的聚吡咯功能化废旧织物[J]. 纺织学报, 2024, 45(11): 153-161.
[7] 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226.
[8] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
[9] 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133.
[10] 管图祥, 吴健, 暴宁钟. 微流控纺丝制备石墨烯纤维基柔性超级电容器的研究进展[J]. 纺织学报, 2023, 44(12): 205-215.
[11] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[12] 李港华, 王航, 史宝会, 曲丽君, 田明伟. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(02): 96-102.
[13] 王洪杰, 姚岚, 王赫, 张仲. 医用口罩熔喷非织造布电极的制备及其电化学性能[J]. 纺织学报, 2022, 43(12): 22-28.
[14] 李晓燕, 张智慧, 姚继明. 基于印刷技术制备柔性微型电容器的研究进展[J]. 纺织学报, 2022, 43(12): 197-202.
[15] 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!