纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 135-142.doi: 10.13475/j.fzxb.20240404401

• 纤维材料 • 上一篇    下一篇

纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能

王薇1, 高建南1,2, 裴笑涵1, 陆鑫1,2(), 孙银银1, 吴建兵1   

  1. 1.苏州工学院 纺织服装与设计学院, 江苏 苏州 215500
    2.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
  • 收稿日期:2024-04-17 修回日期:2025-02-12 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 陆鑫(1967—),女,教授,硕士。主要研究方向为功能材料及其在纺织印染领域应用。E-mail:luxin66cn@163.com
  • 作者简介:王薇(1987—),女,副教授。主要研究方向为新型功能复合材料。
  • 基金资助:
    国家自然科学基金项目(51903019);江苏省基础研究计划项目(BK20181038)

Fabrication and oil-water separation efficiency of cellulose/methyltrimethoxysilane aerogel

WANG Wei1, GAO Jiannan1,2, PEI Xiaohan1, LU Xin1,2(), SUN Yinyin1, WU Jianbing1   

  1. 1. School of Textile Garment and Design, Suzhou University of Technology, Suzhou, Jiangsu 215500, China
    2. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2024-04-17 Revised:2025-02-12 Published:2025-05-15 Online:2025-06-18

摘要:

为解决油脂和颜色物质的水污染问题,以纤维素纳米纤维(CNF)为基材料,低给量的疏水组分甲基三甲氧基硅烷(MTMS)为改性剂,采用冷冻干燥方法成功制备出低成本高性能疏水亲油型纤维素纳米纤维气凝胶(CNF-Xs)。表征了CNF-Xs气凝胶的油水分离性能和力学性能,探讨了MTMS的添加量与气凝胶微观形貌、化学结构、压缩性能、油水分离效能的关系。结果表明:纤维素纳米纤维气凝胶具有微纳米纤维组成的三维网络骨架,并呈现出有序排列的层状结构和多孔胞腔构造,其赋予气凝胶超低密度(0.08 g/cm3)和优越的结构稳定性;在80%的应变下仍可恢复形变,具有良好的压缩性能;对油红染色的正己烷吸收能力达到39.41 g/g,10次循环使用后仍能保持98%的超高过滤效率;此外,MTMS的硅氧烷网络结构赋予CNF-Xs气凝胶优异的疏水性,在低给量的情况 (CNF与MTMS的量比为1:3) 下,CNF-Xs气凝胶的水接触角可达133°。所设计的CNF气凝胶材料在高效吸附油脂的同时又可去除油性颜色物质,优于多数报道的吸附材料,有望实现纺织印染和油污染废水处理绿色清洁生产技术的快速发展。

关键词: 纤维素纳米纤维, 气凝胶, 甲基三甲氧基硅烷, 疏水改性, 油水分离性能, 废水处理

Abstract:

Objective In order to solve water pollution problem caused by lipids and coloring substances, cellulose nanofibers (CNF) is employed as the substrate material, and CNF aerogels are utilized as carriers for hydrophobic modification to prepare highly elastic cellulose nanofiber aerogel (CNF-Xs) with excellent oil absorption properties for practical applications.
Method Cellulose nanofibers were selected as the substrate material, with a low dosage of the hydrophobic component methyltrimethoxysilane (MTMS) serving as the modifier. Utilizing a freeze-drying method, low-cost and high-performance hydrophobic-oleophilic cellulose nanofiber aerogels were fabricated, and the oil-water separation performance and mechanical properties of these aerogels were characterized. Furthermore, the relationship between the dosage of MTMS and micro-morphology, chemical structure, surface roughness, and compressive properties of the aerogels were explored. The influences of MTMS incorporation on the properties of the aerogels was investigated, so as to guide the development of highly elastic CNF-based aerogels with superior oil absorption capabilities for practical applications.
Results The CNF-Xs aerogel was found to feature a three-dimensional network skeleton composed of microfibers and nanofibers, exhibiting an orderly layered structure and porous cellular architecture. The results showed that these structural characteristics endowed the aerogel with an ultra-low density of 0.08 g/cm3 and superior structural stability, which was recoverable from deformation even at a strain as large as 80%, demonstrating good compressive properties. The aerogel exhibited an absorption capacity of 39.41 g/g for hexane stained with Oil Red and maintained an ultra-high separation efficiency of 98% after 10 cycles of use. Additionally, the siloxane network structure of MTMS provided the CNF-Xs aerogel with exceptional hydrophobicity. Even at a low dosage (the molar ratio of CNF and MTMS is 1:3), the water contact angle of the composite aerogel reached 133°.
Conclusion Using cellulose nanofibers as the raw material and the hydrophobic component MTMS as the modifier, hydrophobic and oleophilic CNF-Xs were successfully prepared through a green and low-cost one-step process under conditions of low MTMS dosage. The water contact angle of the CNF-Xs reached 133° (the molar ratio of CNF and MTMS is 1:3), and they exhibited excellent oil-selective adsorption properties. MTMS enhances the elastic potential energy of CNF-Xs through its hydrolysis, condensation, and crosslinking to form a three-dimensional network structure, which results in good mechanical properties even at a strain of 80%. After 100 cycles, the retention rates of the maximum relative height and maximum stress are above 90% and 73%, respectively, indicating high structural stability. The CNF-Xs can recover to their original height within 3 s after removing external strain, demonstrating excellent compressive performance and mechanical strength. The adsorption capacity of CNF-Xs for cyclohexane, n-hexane, hexadecane, and edible oils ranges from 17.82 to 39.41 g/g, exhibiting high efficiency in adsorbing oily dyes. After 10 oil-water separation cycles, the oil-water separation efficiency remains above 98%. The aerogel not only has a simple preparation process and low raw material cost but also exhibits excellent performance in treating oily dye wastewater.

Key words: cellulose nanofiber aerogel, methyltrimethoxysilane, hydrophobic modification, oil-water separation, wastewater treatment

中图分类号: 

  • TQ341

图1

CNF-Xs气凝胶化学结构和表面元素"

图2

CNF-Xs气凝胶的形貌和密度"

图3

CNF-Xs气凝胶的径向SEM照片"

图4

CNF-Xs气凝胶的轴向SEM照片"

图5

CNF-Xs气凝胶轴向孔径分布图 注:d表示气凝胶的平均孔径。"

图6

CNF-Xs气凝胶表面接触角"

图7

CNF-12气凝胶疏水亲油能力"

图8

CNF-12气凝胶饱和吸附量"

图9

CNF-12气凝胶油下压缩干燥后SEM照片和油下压缩性能"

图10

CNF-Xs气凝胶的压缩性能"

图11

CNF-12油水过滤循环 注:十六烷用油红染色;水用亚甲基蓝染色。"

图12

CNF-Xs气凝胶的表面粗糙度 注:Sa表示面粗糙度平均高度偏差,μm。"

[1] LIU G, LI J, LI X, et al. Preparation and properties of novel superhydrophobic cellulose nanofiber aerogels[J]. Journal of Nanomaterials, 2021, 2021(1): 1-8.
[2] 肖昊, 孙辉, 于斌, 等. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(2):179-188.
XIAO Hao, SUN Hui, YU Bin, et al. Preparation of chitosan-SiO2aerogel/cellulose/polypropylene composite spunlaced material and its dye adsorption proper-ties[J]. Journal of Textile Research, 2024, 45(2):179-188.
[3] ZUO K, WU J, CHEN S, et al. Superamphiphobic nanocellulose aerogels loaded with silica nano-particles[J]. Cellulose, 2019, 26: 9661-9671.
[4] 陈扣琴, 王黎明, 郝慧敏, 等. 花生壳纳米纤维素超疏水气凝胶的制备及在棉织物上的应用[J]. 功能材料, 2022, 53(2):2107-2113.
doi: 10.3969/j.issn.1001-9731.2022.02.016
CHEN Kouqin, WANG Liming, HAO Huimin, et al. Preparation of superhydrophobic aerogel of peanut shell nano cellulose and its application on cotton fabric[J]. Journal of Functional Materials, 2022, 53(2):2107-2113.
doi: 10.3969/j.issn.1001-9731.2022.02.016
[5] GOPAKUMAR D A, ARUMUGHAN V, POTT-ATHARA Y B, et al. Robust superhydrophobic cellulose nanofiber aerogel for multifunctional environmental applications[J]. Polymers, 2019.DOI:10.3390/polym11030495.
[6] KESHIPOUR S, KHEZERLOO M. Nanocomposite of hydrophobic cellulose aerogel/graphene quantum dot/Pd: synthesis, characterization, and catalytic application[J]. RSC Advances, 2019, 9(30): 17129-17136.
[7] YUE X, ZHANG S, HE J, et al. Fabrication of flame retarded cellulose aerogel with hydrophobicity via MF/MTMS double cross-linking[J]. Journal of Natural Fibers, 2023.DOI:10.1080/15440478.2022.2133053.
[8] FENG P, WANG X, YANG J. Biomimetic, Highly reusable and hydrophobic graphene/polyvinyl alcohol/cellulose nanofiber aerogels as oil-removing absor-bents[J]. Polymers, 2022.DOI: 10.3390/polym14061077.
[9] ZHANG X, LIU M, WANG H, et al. Ultralight, hydrophobic, anisotropic bamboo-derived cellulose nanofibrils aerogels with excellent shape recovery via freeze-casting[J]. Carbohydrate polymers, 2019, 208: 232-240.
doi: S0144-8617(18)31518-2 pmid: 30658796
[10] GONG C, NI J, TIAN C, et al. Research in porous structure of cellulose aerogel made from cellulose nanofibrils[J]. International Journal of Biological Macromolecules, 2021, 172: 573-579.
doi: 10.1016/j.ijbiomac.2021.01.080 pmid: 33454335
[11] 陈思宇, 林謦怡, 刘慰, 等. 纳米纤维素/二维材料纳米复合材料在水处理领域的应用进展[J]. 中国造纸, 2024, 43(2):39-47.
CHEN Siyu, LIN Qinyi, LIU Wei, et al. Progress in the application of nanocellulose/two-dimensional material nanocomposites in water treatment[J]. China Pulp & Paper, 2024, 43(2):39-47.
[12] LI Y, HE X, LIU P. Hydrophobic aerogel from cotton pulp: reusable adsorbents for oil/organic solvent-water separation[J]. Journal of Polymers and the Environment, 2023, 31(6): 2380-2387.
[13] SI R, LUO H, ZHANG T, et al. High hydrophobic ZIF-8@cellulose nanofibers/chitosan double network aerogel for oil adsorbent and oil/water separation[J]. International Journal of Biological Macromolecules, 2023.DOI:10.1016/j.ijbiomac.2023.124008.
[14] MEI Q, TONG B, LIANG L, et al. A novel way to prepare luminescent hybrid materials derived from 5-chloromehtyl-8-hydroxyquinoline and silylated monomer with coordination to aluminum ion[J]. Journal of Photochemistryand Photobiology A: Chemistry, 2007, 191(2/3): 216-221.
[15] 吴柱. 特殊浸润性纤维素纳米纤维/硅烷偶联剂复合气凝胶的制备及性能研究[D]. 苏州: 苏州大学, 2021:21-34.
WU Zhu. Preparation and performance study of special wettability cellulose nanofiber/silane coupling agent composite aerogel[D]. Suzhou: Soochow University, 2021:21-34.
[16] ZHU Q, CHU Y, WANG Z, et al. Robust superhydrophobic polyuret-hane sponge as a highly reusable oil-absorption material[J]. Journal of Materials Chemistry A, 2013, 1(17):32-54.
[17] ZANINI M, LAVORATTI A, ZIMMERMANN M V G, et al. Aerogel preparation from short cellulose nanofiber of the eucalyptus species[J]. Journal of Cellular Plastics, 2017, 53(5): 503-512.
[18] GUPTA P, VERMA C, MAJI P K. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers[J]. The Journal of Supercritical Fluids, 2019.DOI:10.1016/j.supflu.2019.05.005.
[19] DO NASCIMENTO D M, NUNES Y L, FEI-TOSA JPA, et al. Cellulose nanocrystals-reinforced core-shell hydrogels for sustained release of fertilizer and water retention[J]. International Journal of Biological Macromolecules, 2022, 216: 24-31.
doi: 10.1016/j.ijbiomac.2022.06.179 pmid: 35780918
[20] RONG N, XU Z, ZHAI S, et al. Directional, super-hydrophobic cellulose nanofiber/polyvinyl alcohol/montmorillonite aerogels as green absorbents for oil/water separation[J]. IET Nanobiotechnology, 2021, 15(1): 135-146.
doi: 10.1049/nbt2.12008 pmid: 34694728
[21] YAGOUB H, ZHU L, SHIBRAEN Mhma, et al. Complex aerogels generated from nano-polysaccharides and its derivatives for oil-water separation[J]. Polymers, 2019.DOI:10.3390/polym11101593.
[22] GU H, ZHOU X, LYU S, et al. Magnetic nanocellulose-magnetite aerogel for easy oil adsor-ption[J]. Journal of colloid and interface science, 2020, 560: 849-856.
[23] MI H Y, LI H, JING X, et al. Superhydrophobic cellulose nanofibril/silica fiber/Fe3O4nanocomposite aerogel for magnetically driven selective oil absorp-tion[J]. Cellulose, 2020, 27: 8909-8922.
[24] SHAO W, HAN R, NIU J, et al. Electrospun-SiO2-nanofiber-reinforced cellulose aerogel loaded with ZIF-67 for air filtration and formaldehyde adsorption[J]. Advanced Materials Technologies, 2024.DOI:10.1002/admt.202301395.
[1] 金汝诗, 陈万明, 刘国金, 刘承海, 戚栋明, 翟世民. 生物炭在印染废水处理中的应用研究进展[J]. 纺织学报, 2025, 46(04): 235-243.
[2] 曹展瑞, 纪灿灿, 赫羴姗, 周丰, 向阳, 高飞, 刘轲, 王栋. 阴离子交换型乙烯-乙烯醇共聚物纳米纤维气凝胶蛋白分离材料[J]. 纺织学报, 2025, 46(04): 29-37.
[3] 张文丽, 刘鑫, 张俏俏, 支超, 李建伟, 樊威. 基于废旧亚麻织物的超弹性气凝胶制备及其性能[J]. 纺织学报, 2025, 46(04): 47-55.
[4] 李一, 张恒宇, 郭雯卓, 陈剑英, 王妮, 肖红. 阻抗阶跃渐变层结构纤维素/Ti3C2Tx气凝胶材料的制备及其吸波性能[J]. 纺织学报, 2025, 46(03): 17-26.
[5] 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179.
[6] 杨亮, 孔韩韩, 李韦霖, 祁小芬, 张天芸, 王雪梅, 李文全. 沸石咪唑酯骨架-8的制备及其对刚果红的吸附性能[J]. 纺织学报, 2024, 45(07): 140-149.
[7] 马亮, 俞旭华, 刘文武, 李慈, 方以群, 李俊, 徐佳骏. 气凝胶复合材料在干式潜水服内胆隔热性能提升中的应用[J]. 纺织学报, 2024, 45(07): 181-188.
[8] 高志浩, 宁新, 明津法. 生物质基碳气凝胶及其在储能器件中应用研究进展[J]. 纺织学报, 2024, 45(06): 210-218.
[9] 武守营, 黄启超, 张开封, 张琳萍, 钟毅, 徐红, 毛志平. 铁-三联吡啶配合物活化高碘酸盐体系构建及其对染色废水的催化降解机制[J]. 纺织学报, 2024, 45(06): 105-112.
[10] 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227.
[11] 王新庆, 季东圣, 李舒畅, 杨晨, 张宗宇, 刘实诚, 王航, 田明伟. 包载型聚丙烯腈/SiO2气凝胶复合纳米纤维制备及其隔热性能[J]. 纺织学报, 2024, 45(05): 35-42.
[12] 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112.
[13] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[14] 时吉磊, 唐春霞, 付少海, 张丽平. 柔韧隔热纤维素基气凝胶制备与性能[J]. 纺织学报, 2024, 45(04): 8-14.
[15] 邵明军, 蹇玉兰, 唐唯, 柴希娟, 万辉, 解林坤. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(04): 142-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!