纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 125-134.doi: 10.13475/j.fzxb.20240503701
SUN Jie(
), GUO Yuqing, QU Yun, ZHANG Liping
摘要:
为充分利用芳纶纳米纤维(ANFs)的骨架增强作用,进一步提高纤维电极的力学实用性,结合同轴纤维的结构优势,采用ANFs与ANFs/MXene质量比为1:4的ANFs/MXene(AM)共混物分别作为单(核/壳)层材料,通过调整ANFs增强骨架的分布位置及含量设计制备了不同系列的同轴纤维,并对其微观结构、力学性能、电学性能以及电化学性能进行分析。结果表明:对于ANFs为壳层、AM共混物为核层的同轴纤维,样品壳层质量分数为0.7%ANFs、核层为AM共混物时断裂强度和模量分别可达98.57 MPa、5.25 GPa,比ANFs与MXene质量比为1:4时的复合纤维分别提高了99.37%、15.89%;同时,得益于法拉第反应与赝电容反应协同作用,在0.2 A/g的电流密度下,以样品壳层质量分数为0.5%ANFs、核层为AM的共混物比电容最为突出,可达337.41 F/g。对于AM共混物为壳层、ANFs为核层的同轴纤维,样品核层质量分数为1.5%时其力学强度和模量分别为110.98 MPa、5.28 GPa,较ANFs与MXene质量比为1:4时的复合纤维分别提高了124.47%、16.53%;且其呈电池型电极特性,比电容可达120.10 F/g。
中图分类号:
| [1] | XU Shuaikai, WEI Guodong, LI Junzhi, et al. Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method[J]. Chemical Engineering Journal, 2017, 317: 1026-1036. |
| [2] |
HU Minmin, HU Tao, CHENG Renfei, et al. MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application[J]. Journal of Energy Chemistry, 2018, 27(1): 161-166.
doi: 10.1016/j.jechem.2017.10.030 |
| [3] | 祝超. 基于二维Ti3C2纳米片组装宏观纤维及其柔性超级电容器应用的研究[D]. 苏州: 苏州大学, 2020: 4-6. |
| ZHU Chao. Research on the assembly of macroscopic fibers based on two-dimensional Ti3C2 nanosheets and their application in flexible supercapacitors[D]. Suzhou: Soochow University, 2020: 4-6. | |
| [4] | 成丽媛. PAN/MXene复合电极材料的制备及超级电容器性能研究[D]. 无锡: 江南大学, 2022: 8-9. |
| CHENG Liyuan. Preparation of PAN/MXene composite electrode materials and study on their supercapacitor performance[D]. Wuxi: Jiangnan University, 2022: 8-9. | |
| [5] | 赵颖会, 武辰爽, 王亚洲, 等. MXene改性纺织品在柔性应变传感领域研究进展[J]. 纺织高校基础科学学报, 2022, 35(1):48-60. |
| ZHAO Yinghui, WU Chenshuang, WANG Yazhou, et al. Research progress in mxene-modified textiles for flexible strain sensing applications[J]. Basic Science Journal of Textile Universities, 2022, 35(1): 48-60. | |
| [6] | 贾峰峰. MXene/ANFs电磁屏蔽材料的制备及其性能研究[D]. 西安: 陕西科技大学, 2021: 5-6. |
| JIA Fengfeng. Preparation and performance study of mxene/anfs electromagnetic shielding materials[D]. Xi'an: Shaanxi University of Science & Technology, 2021: 5-6. | |
| [7] | 杨斌. 芳纶纳米纤维高效制备及其在纸基绝缘材料中的应用[D]. 西安: 西北工业大学, 2019: 1-5. |
| YANG Bin. Efficient preparation of aramid nanofibers and their application in paper-based insulating mater-ials[D]. Xi'an: Northwestern Polytechnical University, 2019: 1-5. | |
| [8] | YANG Zhengpeng, ZHAO Wei, NIU Yutao, et al. Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath struc-ture[J]. Carbon, 2018, 132: 241-248. |
| [9] | KOU Liang, HUANG Tieqi, ZHENG Bingna, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics[J]. Nature Communications, 2014. DOI:10.1038/ncomms47594759. |
| [10] | 曹文鑫. 芳纶纳米纤维/碳纳米管复合材料的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 35-36. |
| CAO Wenxin. Preparation and performance study of aramid nanofiber/carbon nanotube composites[D]. Harbin: Harbin Institute of Technology, 2019: 35-36. | |
| [11] | ZHANG Xiang, WANG Anping, ZHOU Xiaoyao, et al. Fabrication of aramid nanofiber-wrapped graphene fibers by coaxial spinning[J]. Carbon, 2020(165):340-348. |
| [12] | 阮英鹏. 超级电容器用石墨烯/聚丙烯腈同轴纤维电极的制备与性能研究[D]. 上海: 东华大学, 2021: 18-19. |
| RUAN Yingpeng. Preparation and performance study of graphene/polyacrylonitrile coaxial fiber electrodes for supercapacitors[D]. Shanghai: Donghua University, 2021: 18-19. | |
| [13] | YANG Peihua, MAI Wenjie. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy, 2014, 8: 274-290. |
| [14] | WANG Jianqiao, LIU Lei, JIAO Songlong, et al. Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202002595. |
| [15] | EPP J. X-ray diffraction (XRD) techniques for materials characterization: materials charac-terization using nondestructive evaluation (NDE) methods[M]. Woodhead Publishing, 2016: 81-124. |
| [16] | 王雨. MXene/纤维素柔性导电复合薄膜的构筑及其性能研究[D]. 西安: 陕西科技大学, 2023: 22-23. |
| WANG Yu. Construction and performance study of MXene/cellulose flexible conductive composite films[D]. Xi'an: Shaanxi University of Science & Technology, 2023: 22-23. | |
| [17] | 韩美康. 二维吸波材料的微结构设计及电磁特性研究[D]. 西安: 西北工业大学, 2018: 61-62. |
| HAN Meikang. Microstructural design and electromagnetic properties study of two-dimensional microwave absorbing materials[D]. Xi'an: Northwestern Polytechnical University, 2018: 61-62. | |
| [18] | 程仁飞. 迈科雉(MXene)的表面修饰、掺杂及其电化学性能研究[D]. 合肥: 中国科学技术大学, 2020: 67-69. |
| CHENG Renfei. Surface modification, doping, and electrochemical performance study of MXene[D]. Hefei: University of Science and Technology of China, 2020: 67-69. | |
| [19] | 关云锋. 钛基双过渡金属MXenes柔性电极的构筑及储能机制研究[D]. 武汉: 武汉科技大学, 2023:25-28. |
| GUAN Yunfeng. Construction and energy storage mechanism study of titanium-based dual transition metal MXenes flexible electrodes[D]. Wuhan: Wuhan University of Science and Technology, 2023:25-28. | |
| [20] |
GUO Ying, ZHANG Deyang, YANG Ya, et al. MXene-encapsulated hollow Fe3O4 nanochains embedded in N-doped carbon nanofibers with dual electronic pathways as flexible anodes for high-performance Li-ion batteries[J]. Nanoscale, 2021, 13(8): 4624-4633.
doi: 10.1039/d0nr09228b pmid: 33605964 |
| [21] | SARCHEVA A, GOGOTSI Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene[J]. Chemistry of Materials, 2020, 32(8): 3480-3488. |
| [22] |
YANG Bin, WANG Lin, ZHANG Meiyun, et al. Timesaving, high-efficiency approaches to fabricate aramid nanofibers[J]. ACS Nano, 2019, 13(7): 7886-7897.
doi: 10.1021/acsnano.9b02258 pmid: 31244045 |
| [23] | ADAR, Fran. Molecular spectroscopy workbench: depth resolution of the raman microscope: optical limitations and sample characteristics[J]. Spectroscopy, 2010, 25(3): 16-23. |
| [24] | 李念, 郭为民, 沈思静, 等. NiMn-LDH/MnMoO4/CC柔性复合电极的制备及其赝电容性能[J]. 纺织高校基础科学学报, 2023, 36(6): 2-60,75. |
| LI Nian, GUO Weimin, SHEN Sijing, et al. Preparation and pseudocapacitive performance of NiMn-LDH/MnMoO4/CC flexible composite electrode[J]. Basic Science Journal of Textile Universities, 2023, 36(6): 52-60,75. | |
| [25] | ZHAO Xiaoyu, ZHANG Yingbin, WANG Yanfei, et al. Battery-type electrode materials for sodium-ion capac-itors[J]. Batteries & Supercaps, 2019, 2(11): 899-917. |
| [26] | CAO Wei, LIU Yu, XU Fang, et al. In situ electrochemical synthesis of rod-like Ni-MOFs as battery-type electrode for high performance hybrid supercapacitor[J]. Journal of The Electrochemical Society, 2019. DOI: 10.1149/2.0072005JES. |
| [27] | OKHAY O, TKACH A. Graphene/reduced graphene oxide-carbon nanotubes composite electrodes: from capacitive to battery-type behaviour[J]. Nanomaterials, 2021. DOI:10.3390/nano11051240. |
| [1] | 韩力杰, 刘樊, 张其冲. 纤维状水系锌离子电池的研究进展与展望[J]. 纺织学报, 2025, 46(05): 59-69. |
| [2] | 郭羽晴, 屈芸, 张利平, 孙洁. 芳纶纳米纤维制备及其可纺性[J]. 纺织学报, 2025, 46(04): 1-10. |
| [3] | 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25. |
| [4] | 李万新, 舒大武, 安芳芳, 韩博, 任支刚, 单巨川. 碳化钛与三价铁离子协同过硫酸钠对活性染料废水的降解[J]. 纺织学报, 2025, 46(01): 138-147. |
| [5] | 关玉, 王冬, 郭一凡, 付少海. MoS2/MXene阻燃气敏棉织物的制备及其性能[J]. 纺织学报, 2024, 45(12): 159-165. |
| [6] | 周奉凯, 李沂蒙, 彭佳敏, 毛吉富, 王璐. 用于增强海水淡化性能的聚吡咯功能化废旧织物[J]. 纺织学报, 2024, 45(11): 153-161. |
| [7] | 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226. |
| [8] | 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32. |
| [9] | 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133. |
| [10] | 管图祥, 吴健, 暴宁钟. 微流控纺丝制备石墨烯纤维基柔性超级电容器的研究进展[J]. 纺织学报, 2023, 44(12): 205-215. |
| [11] | 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49. |
| [12] | 李港华, 王航, 史宝会, 曲丽君, 田明伟. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(02): 96-102. |
| [13] | 王洪杰, 姚岚, 王赫, 张仲. 医用口罩熔喷非织造布电极的制备及其电化学性能[J]. 纺织学报, 2022, 43(12): 22-28. |
| [14] | 李晓燕, 张智慧, 姚继明. 基于印刷技术制备柔性微型电容器的研究进展[J]. 纺织学报, 2022, 43(12): 197-202. |
| [15] | 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40. |
|
||