纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 197-202.doi: 10.13475/j.fzxb.20210203707

• 综合述评 • 上一篇    下一篇

基于印刷技术制备柔性微型电容器的研究进展

李晓燕1,2, 张智慧1, 姚继明1,2()   

  1. 1.河北科技大学 纺织服装学院, 河北 石家庄 050018
    2.河北省纺织服装技术创新中心, 河北 石家庄 050018
  • 收稿日期:2021-02-15 修回日期:2022-09-04 出版日期:2022-12-15 发布日期:2023-01-06
  • 通讯作者: 姚继明
  • 作者简介:李晓燕(1989—),女,副教授,博士。主要从事柔性可穿戴纺织材料的研发与应用。
  • 基金资助:
    国家级大学生创新创业训练计划项目(201910082012)

Research progress in flexible micro supercapacitor based on printing technology

LI Xiaoyan1,2, ZHANG Zhihui1, YAO Jiming1,2()   

  1. 1. College of Textile and Clothing, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018,China
    2. Hebei Textile and Garment Technology Innovation Center, Shijiazhuang, Hebei 050018, China
  • Received:2021-02-15 Revised:2022-09-04 Published:2022-12-15 Online:2023-01-06
  • Contact: YAO Jiming

摘要:

柔性微型超级电容器作为一种新兴的储能器件,具有充放电速度快、功率密度大、循环寿命长等优点,在可穿戴电子设备领域中具有良好的应用前景。为实现柔性显示器、晶体管、射频识别装置及可穿戴设备等柔性电子产品的协同发展,针对微型超级电容器中存在的关键问题,阐述了制备微型超级电容器的凹版印刷法和丝网印刷方法,认为丝网印刷法工艺简单、耗时短、可集成、易实现工业化生产,该技术制备的叉指结构可在有限平面内实现离子转移;针对导电油墨的核心印刷技术,分析了无机系、有机系及复合型导电油墨研究近况,总结了复合型导电油墨制备的微型超级电容器电容特性,对其应用前景进行展望。

关键词: 微型超级电容器, 印刷技术, 导电油墨, 叉指结构

Abstract:

As a new energy storage device, flexible micro-supercapacitor has the advantages of fast charging and discharging, high power density and long cycle life, which has a good application prospect in wearable electronic devices. In order to facilitate the normal use of flexible electronic products such as flexible displays, transistors, radio frequency identification devices and wearable devices, this review paper introduces the gravure printing method and screen printing method for the preparation of micro supercapacitors, which are the key problems in the preparation of micro supercapacitors. Screen printing method has the advantages of being a simple process, short time consumption, integration and industrial production. The interdigital structure prepared by screen printing can achieve ion transfer in a limited plane. Conductive ink is the core part of printing technology, and inorganic, organic and composite conductive inks are analyzed. Micro supercapacitors prepared with composite conductive inks have good capacitance characteristics, and their application prospects are prospected.

Key words: micro supercapacitor, printing technology, conductive ink, forked finger structure

中图分类号: 

  • TS193
[1] LIU Li, LU Qiang, YANG Shuanglei, et al. All-printed solid-state microsupercapacitors derived from self-template synthesis of Ag@PPy nanocomposites[J]. Advanced Materials Technologies, 2018, 3(1): 1-8.
[2] 赵雯. 基于可印刷制备的高性能平面叉指结构柔性微型超级电容器[D]. 武汉: 华中科技大学, 2019:9-15.
ZHAO Wen. Flexible micro supercapacitors with high performance planar interfinger structure based on printable fabrication[D]. Wuhan: Huazhong University of Science and Technology, 2019: 9-15.
[3] 蔡凤莲. 新型石墨烯基微型超级电容器的制备及性能研究[D]. 湘潭: 湘潭大学, 2017:1-3.
CAI Fenglian. Preparation and properties of novel graphene-based miniature supercapacitors[D]. Xiangtan: Xiangtan University, 2017:1-3.
[4] 张琪. 印制式石墨烯电极及其在微型超级电容器中的应用研究[D]. 上海: 上海师范大学, 2016:2-8.
ZHANG Qi. Study on printed graphene electrode and its application in micro supercapacitor[D]. Shanghai: Shanghai Normal University, 2016:2-8.
[5] 王建云. 石墨烯基微型超级电容器的研究[D]. 天津: 天津理工大学, 2015:2-5.
WANG Jianyun. Study on graphene-based miniature supercapacitor[D]. Tianjin: Tianjin University of Technology, 2015:2-5.
[6] LIU Yuqing, ZHANG Binbin, XU Qun, et al. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing[J]. Advanced Functional Materials, 2018, 28(21):1-12.
[7] PEI Zhibin, HU Haibo, LIANG Guojin, et al. Carbon-based flexible and all-solid-state micro-supercapacitors Fabricated by Inkjet Printing with enhanced perform-ance[J]. Nano-Micro Letters, 2017, 9(2): 1-11.
doi: 10.1007/s40820-016-0103-7
[8] PU Xiong, LIU Mengmeng, LI Linxuan, et al. Wearable textile-based in-plane microsupercapacitors[J]. Advanced Energy Materials, 2016, 6(24): 1-7.
[9] LI Hongpeng, LIU Shuiren, LI Xiran, et al. Screen-printing fabrication of high volumetric energy density micro-supercapacitors based on high-resolution thixotropic-ternary hybrid interdigital micro-electro-des[J]. Materials Chemistry Frontiers, 2019, 3(4): 626-635.
doi: 10.1039/c8qm00639c
[10] DOS ANJOS JUNIOR Afonso Gabriel, DE FREITAS CARDOSO Gabriel pimento, PATERNO Leonardo Giordano, et al. Laser reduction of graphene oxide/zinc oxide nanoparticle nanocomposites as a one‐step process for supercapacitor fabrication[J]. Physica Status Solidi, 2020, 217(11): 1-7.
[11] HONG Hong, JIANG Lihong, TU Huating, et al. Formulation of UV curable nano-silver conductive ink for direct screen-printing on common fabric substrates for wearable electronic applications[J]. Smart Materials and Structures, 2021, 30(4): 1-6.
[12] 师晓宇. 石墨烯基平面型、集成化微型超级电容器的构建和性能研究[D]. 合肥: 中国科学技术大学, 2020:4-25.
SHI Xiaoyu. Construction and performance research of graphene-based planar and integrated miniature supercapacitors[D]. Hefei: University of Science and Technology of China, 2020:4-25.
[13] 张园. 有机酸银基导电油墨的制备与成膜性能研究[D]. 天津: 天津大学, 2014:8-11.
ZHANG Yuan. Preparation and film forming properties of organic acid silver based conductive ink[D]. Tianjin: Tianjin University, 2014:8-11.
[14] 李茜. 基于丝网印刷导电油墨转移率的影响因素研究[D]. 北京: 北京印刷学院, 2019:1-6.
LI Qian. Research on the influencing factors of conductive ink transfer rate based on screen prin-ting[D]. Beijing: Beijing Institute of Printing, 2013:1-6.
[15] LIU Shuangyu, XIE Jian, LI Haibo, et al. Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(42): 18125-18131.
doi: 10.1039/C4TA03192J
[16] LIANG Guijie, ZHU Ligen, XU Jie, et al. Investigations of poly (pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode[J]. Electrochimica Acta, 2013, 103(8): 9-14.
doi: 10.1016/j.electacta.2013.04.065
[17] KIM Seyu, KIM So Yeon, CHUNG Moon Hyun, et al. A one-step roll-to-roll process of stable AgNW/PEDOT: PSS solution using imidazole as a mild base for highly conductive and transparent films: optimizations and mechanisms[J]. Journal of Materials Chemistry C, 2015, 3(22): 5859-5868.
doi: 10.1039/C5TC00801H
[18] SECOR Ethan B, COOK Alexander B, TABOR Christopher E, et al. Wiring up liquid metal: stable and robust electrical contacts enabled by printable graphene inks[J]. Advanced Electronic Materials, 2018, 4(1): 1-10.
[19] CHEN Lu, HUANG Lei, LIN Youjie, et al. Fully gravure-printed WO3/Pt-decorated rGO nanosheets composite film for detection of acetone[J]. Sensors & Actuators B Chemical, 2018, 255(2): 1482-1490.
[20] XIAO Yuxiu, HUANG Lei, ZHANG Qi, et al. Gravure printing of hybrid MoS2@S-rGO interdigitated electrodes for flexible microsupercapacitors[J]. Applied Physics Letters, 2015, 107(1): 1-11.
[21] SHI Xiaoyu, PEI Songfeng, ZHOU Feng, et al. Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility[J]. Energy & Environmental Science, 2019, 12(5): 1534-1541.
[22] LU Qiang, LIU Li, YANG Shuanglei, et al. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors[J]. Journal of Power Sources, 2017, 361: 31-38.
doi: 10.1016/j.jpowsour.2017.06.065
[23] XU Shuaikai, YOHAN Dall Agnese, WEI Guodong, et al. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors[J]. Nano Energy, 2018, 50(3): 479-488.
doi: 10.1016/j.nanoen.2018.05.064
[24] 陈欣. 可印刷柔性电化学储能器件及其性能研究[D]. 南京: 南京邮电大学, 2020:2-14.
CHEN Xin. Research on printable flexible electrochemical energy storage device and its performance[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020:2-14.
[25] 朱华杨. 石墨烯/纳米银导电油墨的制备及其导电性能研究[D]. 西安: 西安理工大学, 2018:4-8.
ZHU Huayang. Preparation and conductivity of graphene/ nano silver conductive ink[D]. Xi'an: Xi'an University of Technology, 2018:4-8.
[26] 曾凡聪. 水性石墨烯导电油墨的制备及其丝网印刷适性研究[D]. 广州: 华南理工大学, 2019:8-12.
ZENG Fancong. Preparation of waterborne graphene conductive ink and its screen printing suitability[D]. Guangzhou: South China University of Technology, 2019:8-12.
[27] 华成杰. 石墨烯-炭黑复合填料水性导电碳浆性能研究[D]. 徐州: 中国矿业大学, 2017:6-17.
HUA Chengjie. Study on properties of graphene-carbon black composite fillers for waterborne conductive carbon paste[D]. Xuzhou: China University of Mining and Technology, 2017:6-17.
[28] 周星. 水性聚氨酯基碳纳米管导电油墨的制备与性能研究[D]. 西安: 西安理工大学, 2017:8-21.
ZHOU Xing. Preparation and properties of waterborne polyurethane based carbon nanotube conductive ink[D]. Xi'an: Xi'an University of Technology, 2017:8-21.
[29] 付文亭, 陈锦新. 适用于多种印刷方式的环保型光变油墨配方[J]. 包装学报, 2017, 9(6):63-67.
FU Wenting, CHEN Jinxin. Formulation of environmentally friendly light variable ink for various printing methods[J]. Journal of Packaging, 2017, 9(6):63-67.
[30] WANG Zehong, WANG Wei, JIANG Zhikang, et al. Low temperature sintering nano silver condutive ink printer on cotton fabric as printed electronics[J]. Progress in Organic Coatings, 2016, 101:604-611.
doi: 10.1016/j.porgcoat.2016.08.019
[31] 王所杰, 王灿才. 碳系水性导电油墨及导电性能研究[J]. 中国印刷与包装研究, 2009, 1(5):58-61.
WANG Suojie, WANG Cancai. Study on carbon based waterborne conductive ink and its conductivity[J]. China Printing and Packaging Research, 2009, 1 (5): 58-61.
[32] WOO Kyoohee, KIM Dongjo, KIM Jangsub, et al. Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate[J]. Langmuir, 2008, 25(1): 429-433.
doi: 10.1021/la802182y
[33] 赵凯莉. 铜浆油墨的制备及性能研究[D]. 西安: 西安工程大学, 2016:42-45.
ZHAO Kaili. Preparation and properties of copper paste ink[D]. Xi'an: Xi'an Polytechnic University, 2016:42-45.
[34] 杨宇. 纸基纳米银喷墨导电油墨的制备及其性能研究[D]. 广州: 华南理工大学, 2015:8-20.
YANG Yu. Preparation and properties of paper-based nano silver ink-jet conductive ink[D]. Guangzhou: South China University of Technology, 2015:8-20.
[35] 陈伟, 张会堂, 刘瑄, 等. 炭黑-石墨导电涂料导电性能之影响因素的试验研究[J]. 炭素技术, 2003(2):25-27.
CHEN Wei, ZHANG Huitang, LIU Yu, et al. Experimental study on the factors influencing the conductivity of carbon black graphite conductive coatings[J]. Carbon Technology, 2003 (2): 25-27.
[36] MAYAVAN Sundar, SIVA Tamilvanan, SATHIYANARANAN Sadagapon. Graphene ink as a corrosion inhibiting blanket for iron in an aggressive chloride environment[J]. Rsc Advances, 2013, 3(47): 24868-24871.
doi: 10.1039/c3ra43931c
[37] 石小梅, 徐长妍, 姬安. 石墨烯导电油墨的研究进展[J]. 包装工程, 2015, 36(23): 17-23,29.
SHI Xiaomei, XU Changyan, JI An. Research progress of graphene conductive ink[J]. Packaging Engineering, 2015, 36 (23): 17-23, 29.
[38] 王振廷, 李洋, 尹吉勇. 石墨烯-碳纳米管导电油墨的制备及其导电性能[J]. 黑龙江科技大学学报, 2018, 28(5):514-518.
WANG Zhenting, LI Yang, YIN Jiyong. Preparation and conductivity of graphene carbon nanotube conductive ink[J]. Journal of Heilongjiang University of Science and Technology, 2018, 28 (5): 514-518.
[39] YANG Wendong, WANG Changhai. Graphene and the related conductive inks for flexible electronics[J]. Journal of Materials Chemistry C, 2016, 4(30): 7193-7207.
doi: 10.1039/C6TC01625A
[40] MARKO T Pudas, NIINA Halonen, AIVI Granat, et al. Gravure printing of conductive particulate polymer inks on flexible substrates[J]. Progress in Organic Coatings, 2005, 54(4):310-316.
doi: 10.1016/j.porgcoat.2005.07.008
[41] 赵军明, 刘娟, 郭兵毅, 等. 还原氧化石墨烯/磺化聚苯胺导电油墨的制备及性能研究[J]. 化工新型材料, 2020, 48(9):72-75,80.
ZHAO Junming, LIU Juan, GUO Bingyi, et al. Preparation and properties of reduced graphene oxide/sulfonated polyaniline conductive inks[J]. New Chemical Materials, 2020, 48(9):72-75,80.
[42] LUECHINGER Norman A, ATHANASSIOU Evagelos K, STARK Wendelin J. Graphene stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics[J]. Nanotechnology, 2008, 19(44):1-8.
[43] GAYNOR Whitney, BURKHRD George F, MCGHEE Michael D, et al. Smooth nanowire/polymer composite transparent electrodes[J]. Advanced Materials, 2011, 23(26):2905-2910.
doi: 10.1002/adma.201100566
[44] 姬安, 王希, 徐长妍, 等. 石墨烯/炭黑导电油墨的制备与性能研究[J]. 林业工程学报, 2017, 2(1):97-102.
JI An, WANG Xi, XU Changyan, et al. Preparation and performance study of graphene/carbon black conductive ink[J]. Journal of Forestry Engineering, 2017, 2(1):97-102.
[1] 高益平, 李义臣, 王晓辉, 刘国金, 周岚, 邵敏, 邵建中. 基于液态光子晶体固定化的柔性结构生色膜制备及其性能[J]. 纺织学报, 2022, 43(12): 1-7.
[2] 邵敏, 王丽君, 李美琪, 刘今强, 邵建中. 非水介质-微水体系中活性染料的水解和键合性能[J]. 纺织学报, 2022, 43(11): 94-103.
[3] 郭亚飞, 梁高勇, 王美慧, 郝新敏. 臭氧等离子体预处理对芳纶染色性能的影响[J]. 纺织学报, 2022, 43(10): 83-88.
[4] 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136.
[5] 谢子文, 李家炜, 汪芬萍, 戚栋明, 严小飞, 朱晨凯, 赵磊, 何贵平. 有机硅改性水性聚氨酯丙烯酸酯杂化胶乳的制备及其在涂料印花中的应用[J]. 纺织学报, 2022, 43(08): 119-125.
[6] 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94.
[7] 熊永辉, 王冬, 杜长森, 付少海. 二硫代焦磷酸酯水性分散体系的制备及其在阻燃粘胶纤维中的应用[J]. 纺织学报, 2022, 43(07): 22-28.
[8] 刘宇, 谢汝义, 宋亚伟, 齐元章, 王辉, 房宽峻. 涤/棉交织物一浴法轧染工艺[J]. 纺织学报, 2022, 43(05): 18-25.
[9] 朱小威, 韦天琛, 李亦江, 邢铁玲, 陈国强. 聚苯乙烯/铁-单宁酸配合物微球在棉织物上的结构生色[J]. 纺织学报, 2022, 43(05): 32-37.
[10] 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96.
[11] 何颖婷, 李敏, 付少海. 靛蓝分散体的制备及其还原-氧化过程[J]. 纺织学报, 2022, 43(04): 84-89.
[12] 侯倩倩, 李文熙, 赵美华. 光催化条件下棉织物的蓝晒工艺印相[J]. 纺织学报, 2022, 43(04): 110-116.
[13] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[14] 何颖婷, 李敏, 王瑞丰, 王春霞, 付少海. 涤纶织物的连续式轧染工艺[J]. 纺织学报, 2022, 43(03): 110-115.
[15] 周天博, 郑环达, 蔡涛, 于佐君, 王力成, 郑来久. 活性分散黄染料对涤纶/棉混纺织物的超临界CO2同浴染色[J]. 纺织学报, 2022, 43(03): 116-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!