纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 94-103.doi: 10.13475/j.fzxb.20220812110

• 染整与化学品 • 上一篇    下一篇

非水介质-微水体系中活性染料的水解和键合性能

邵敏, 王丽君, 李美琪, 刘今强, 邵建中()   

  1. 浙江理工大学 生态染整技术教育部工程研究中心, 浙江 杭州 310018
  • 收稿日期:2022-08-29 修回日期:2022-09-29 出版日期:2022-11-15 发布日期:2022-12-26
  • 通讯作者: 邵建中
  • 作者简介:邵敏(1968—),女,高级工程师,博士。主要研究方向为生态染整技术。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309600)

Hydrolysis and bonding properties of reactive dyes in non-aqueous medium with minimal water systems

SHAO Min, WANG Lijun, LI Meiqi, LIU Jinqiang, SHAO Jianzhong()   

  1. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-08-29 Revised:2022-09-29 Published:2022-11-15 Online:2022-12-26
  • Contact: SHAO Jianzhong

摘要:

为探明非水介质-微水体系中活性染料与棉纤维的键合性能及伴随的染料水解行为,应用高效液相色谱法(HPLC)结合实际染色法,研究非水介质-微水溶液体系中、模拟反应体系中及实际染色中活性染料的水解特性、与醇羟基的键合特性及对棉纤维的上染特性。结果表明:染料在非水介质-微水溶液体系中的水解主要取决于染料与水的相对浓度、pH值和温度;在非水介质-微水的甲醇模拟反应体系中,活性染料的醇解率显著高于常规水浴体系,提高pH值使醇解率与水解率之比有所提高,而提高温度则使该比例明显下降;在非水介质-微水的染色体系中,较宽的pH值和温度范围内活性染料染棉均具有超高的上染率;非水介质-微水体系染色拟采用较高pH值和较低温度工艺,以利节水低碳生产。

关键词: 非水介质, 活性染料, 棉, 水解, 醇解, 键合反应, 高效液相色谱

Abstract:

To ascertain the bonding properties of reactive dyes with alcohol hydroxyls on cotton fibers and the accompanying hydrolysis behavior of reactive dyes in non-aqueous medium with minimal water systems, the high performance liquid chromatography (HPLC) and the actual dyeing method were jointly used to study the hydrolysis characteristics of reactive dyes in the solution systems of non-aqueous medium with minimal water, the bonding properties of reactive dyes with alcohol hydroxyl groups in the simulated reaction system using methanol as the simulant of alcohol hydroxyl groups on cellulose fibers, and the dyeing performance of reactive dyes onto cotton fibers in actual non-aqueous medium dyeing system. The results show that, the hydrolysis properties of reactive dyes in the solution system of non-aqueous medium with minimal water mainly depend on the relative concentration of dyes to water, the pH value, and the temperature; the alcoholysis rate of reactive dyes in non-aqueous medium with minimal water system is significantly higher than that in the conventional water bath, and the increase in pH value increases the ratio of alcoholysis percentage to hydrolysis percentage, while the increase in temperature reduces the ratio significantly; the dyeing in non-aqueous medium with minimal water system can achieve ultra-high exhaustion rate of reactive dyes onto cotton in a wide range of pH value and temperature; and the dyeing process for cotton reactive dyeing in non-aqueous medium with minimal water system should adapt the strategy with a comparatively higher pH value and lower temperature, which is beneficial to the dyeing and fixing performance of reactive dyes, and thus beneficial to water-saving and carbon reduction production.

Key words: non-aqueous medium, reactive dye, cotton, hydrolysis, alcoholysis, bonding reaction, high performance liquid chromatography(HPLC)

中图分类号: 

  • TS193.1

表1

C.I.活性红24和 C.I.活性蓝19的梯度淋洗体系"

C.I.活性红24 C.I.活性蓝19
时间/
min
流动相
A/%
流动相
B/%
时间/
min
流动相
A/%
流动相
B/%
0 20 80 0 20 80
10 45 55 5 40 60
15 20 80 15 20 80

图1

不同介质中活性染料水解样本的典型HPLC谱图"

图2

不同介质中水解染料峰面积百分比随时间的变化"

图3

不同介质体系中活性染料在不同条件下的水解百分率"

图4

不同介质体系中活性染料的醇解和水解百分率"

图5

不同介质的模拟反应体系示意图"

图6

非水介质-微水模拟反应体系中在不同条件下的醇解染料百分率"

表2

不同pH条件下活性染料在不同介质体系中的醇解百分率和水解百分率"

染料 pH值 常规水浴 D5-微水 LP-微水
Ra/% H2/% Ra:H2 Ra/% H2/% Ra:H2 Ra/% H2/% Ra:H2
C.I.
活性红24
9 5.5 4.3 1.28 54.2 7.0 7.74 54.7 7.4 7.39
10 30.7 18.0 1.71 87.1 11.3 7.71 86.4 10.6 8.15
11 61.9 35.3 1.75 89.0 11.0 8.09 89.5 10.5 8.52
C.I.
活性蓝19
9 18.4 23.7 0.78 86.9 10.7 8.12 82.6 10.3 8.02
10 38.8 45.6 0.85 89.8 10.2 8.80 89.5 10.5 8.52
11 50.3 49.7 1.01 92.7 7.3 12.70 92.9 7.1 13.08

表3

不`同温度条件下活性染料在不同介质中的醇解百分率和水解百分率"

染料 温度/
常规水浴 D5-微水 LP-微水
Ra/% H2/% Ra:H2 Ra/% H2/% Ra:H2 Ra/% H2/% Ra:H2
C.I.
活性红24
70 61.9 35.3 1.75 89.0 11.0 8.09 89.5 10.5 8.52
80 46.5 51.9 0.90 82.1 17.9 4.59 81.7 18.3 4.46
90 39.5 60.5 0.65 60.6 39.4 1.54 64.5 35.5 1.82
C.I.
活性蓝19
60 55.6 40.8 1.36 93.7 6.3 14.87 94.1 5.9 15.95
70 50.3 49.7 1.01 92.7 7.3 12.70 92.9 7.1 13.08
80 39.8 60.2 0.66 89.8 10.2 8.80 89.5 10.5 8.52

表4

活性染料在不同介质体系中的上染率和水解率"

染料 染色条件 常规水浴染色体系 D5-微水染色体系 LP-微水染色体系
E/% Hr/% H/% E/% Hr/% H/% E/% Hr/% H/%
C.I.
活性红24
70 ℃/pH=11 11.9 48.1 42.4 97.1 30.7 0.9 98.2 49.2 0.9
80 ℃/pH=11 33.2 96.6 64.6 98.3 93.5 1.6 98.1 94.1 1.8
90 ℃/pH=11 47.3 96.9 51.1 98.1 96.3 1.8 97.9 96.2 2.0
90 ℃/pH=10 26.1 71.7 53.0 98.1 90.5 1.7 97.6 91.4 2.2
C.I.
活性蓝19
60 ℃/pH=11 74.6 60.7 15.4 98.8 46.3 0.6 98.7 48.5 0.6
60 ℃/pH=10 31.3 37.2 25.6 99.6 25.0 0.1 98.4 24.4 0.4
70 ℃/pH=10 60.7 81.0 31.8 98.8 62.4 0.8 99.8 59.1 0.1
80 ℃/pH=10 64.4 85.1 30.3 99.2 69.6 0.6 98.9 72.9 0.8

图7

活性染料在不同介质溶液体系、甲醇模拟反应体系和棉织物染色体系中的水解率比较"

[1] KHATRI A, PEERZADA M H, MOHSIN M, et al. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution[J]. Journal of Cleaner Production, 2015,87, 50-57.
[2] 刘添涛. 印染行业各口径水污染物排放数据对比[J]. 染整技术, 2021, 43(1): 1-2.
LIU Tiantao. Comparison of water pollutant discharge data of different caliber in printing and dyeing industry[J]. Textile Dyeing and Finishing Journal, 2021, 43(1): 1-2.
[3] 缪华丽, 李永强, 付承臣, 等. 棉织物的活性染料/D5悬浮体系染色动力学研究[J]. 纺织学报, 2013, 34(5): 76-81.
MIAO Huali, LI Yongqiang, FU Chengchen, et al. Dyeing kinetics study of reactive dye on cotton in dye/D5 suspending system[J]. Journal of Textile Research, 2013, 34(5): 76-81.
[4] 付承臣. 活性染料/D5悬浮体系全程非水染色技术研究[D]. 杭州: 浙江理工大学, 2016:20-30.
FU Chengchen. A study on non-aqueous dyeing technology in reactive dye/D5 suspension system[D]. Hangzhou: Zhejiang Sci-Tech University, 2016:20-30.
[5] 裴刘军. 硅基非水介质中活性染料微乳液染棉机理研究[D]. 杭州: 浙江理工大学, 2017: 45-52.
PEI Liujun. Study of micro-emulsion reactive dyeing for cotton in siloxane non-aqueous medium[D]. Hangzhou: Zhejiang Sci-Tech University, 2017: 45-52.
[6] FU C C, TAO R, WANG J P, et al. Water-saving aftertreatment of reactive dyed cotton fabrics in D5 medium[J]. Journal of The Textile Institute, 2015, 107(6):719-723.
doi: 10.1080/00405000.2015.1061741
[7] PEI L J, GU X M, WANG J P. Sustainable dyeing of cotton fabric with reactive dye in silicone oil emulsion for improving dye uptake and reducing wastewater[J]. Cellulose, 2021 (4): 1-14.
[8] AN Y, MA J R, ZHU Z X, et al. Study on a water-saving and salt-free reactive dyeing of cotton fabrics in non-aqueous medium of liquid paraffin system[J]. Journal of The Textile Institute, 2020, 111(10): 1538-1545.
doi: 10.1080/00405000.2020.1711552
[9] 樊杰, 苗俊华, 安源, 等. 棉织物的活性染料浸轧/非水介质固着工艺[J]. 印染助剂, 2021, 38(5): 39-42.
FAN Jin, MIAO Junhua, AN Yuan, et al. Padding/non-aqueous medium fixation process of cotton fabrics with reactive dyes[J]. Textile Auxiliaries, 2021, 38(5): 39-42.
[10] 朱振旭, 周岚, 黄益, 等. 棉织物的活性染料/液体石蜡体系无盐节水染色[J]. 染整技术, 2017, 39(3): 52-57.
ZHU Zhenxu, ZHOU Lan, HUANG Yi, et al. A water-saving and salt-free dyeing of cotton fabrics with reactive dye/liquid paraffin system[J]. Textile Dyeing and Finishing Journal, 2017, 39(3): 52-57.
[11] 马英, 刘天增. 液体石蜡的应用[J]. 当代化工, 1993 (2): 14-17.
MA Ying, LIU Tianzeng. Application of liquid paraf-fin[J]. Contemporary Chemical Industry, 1993(2): 14-17.
[12] 邵敏. 活性染料与不同亲核基团的反应差异性及多组分织物染色调控技术[D]. 杭州: 浙江理工大学, 2014: 19-23.
SHAO Min. Study on the reaction differences between reactive dyes and different nucleophilic groups and dyeing controlling technology for multi-component fabrics[D]. Hangzhou: Zhejiang Sci-Tech University, 2014: 19-23.
[13] 邵敏, 邵建中, 刘今强, 等. 高效液相色谱研究丝素亲核基团与一氯均三嗪型活性染料反应动力学[J]. 分析化学, 2009, 37(7): 989-993.
SHAO Min, SHAO Jianzhong, LIU Jingqiang, et al. Reaction kinetics of monochlorotriazine reactive dyes with neucleophilic groups in silk by high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2009, 37(7): 989-993.
[14] SHAO M, SHAO J Z, LIUJ Q, et al. Study on differences of reaction behavior of phenolic hydroxyl groups with vinyl sulfone reactive dyes and monochlorotriazine reactive dyes[J]. Fibers and Polymers, 2014(9):1865-1872.
[15] 缪华丽, 刘今强. 李永强. 活性染料在D5悬浮染色体系中的水解动力学研究[J]. 纺织学报, 2013, 34(8):77-82.
MIAO Huali, LIU Jinqiang, LI Yongqiang, et al. Study on hydrolysis kinetics of reactive dyes in dye/D5 suspending system[J]. Journal of Textile Research, 2013, 34(8):77-82.
[16] PEI L J, LIU J Q, WANG J P. Study of dichlorotriazine reactive dye hydrolysis in siloxane reverse micro-emulsion[J]. Journal of Cleaner Production, 2017, 165(1): 994-1004.
doi: 10.1016/j.jclepro.2017.07.185
[17] PEI L J, LIU J Q, CAI G, et al. Study of hydrolytic kinetics of vinyl sulfone reactive dye in siloxane reverse micro-emulsion[J]. Textile Research Journal, 2017, 87(19): 2368-2378.
doi: 10.1177/0040517516671123
[18] KLANCNIK M. The influence of temperature on the kinetics of concurrent hydrolysis and methanolysis reactions of a monochlorotriazine reactive dye[J]. Dyes and Pigments, 2000(46):9-15.
[19] 李萍, 邵敏, 邵建中. 活性嫩黄K-6G的水解及醇解动力学研究[J]. 纺织学报, 2009, 30(7): 83-87.
LI Pin, SHAO Min, SHAO Jianzhong. Study on hydrolysis and alcoholysis kinetics of Reactive BrilYellow K-6G[J]. Journal of Textile Research, 2009, 30 (7): 83-87.
[20] 汪正范. 色谱定性与定量[M]. 北京: 化学工业出版社, 2000:163-172.
WANG Zhengfan. Qualitative and quantitative with chromatography[M]. Beijing: Chemical Industry Press, 2000:163-172.
[21] 邵敏, 邵建中, 刘今强, 等. 活性染料与蚕丝亲核基团反应性能的高效液相色谱分析[J]. 分析化学, 2007(5): 672-676.
SHAO Min, SHAO Jianzhong, LIU Jinqiang, et al. High performance liquid chromatography method for investigating the reaction behavior of reactive dyes with neucleophilies on silk by[J]. Chinese Journal of Analytical Chemistry, 2007(5): 672-676.
[22] 李美琪, 邵敏, 安源. 液体石蜡非水介质体系中活性染料的水解性能[J/OL]. 现代纺织技术: 2022-06-13(1-7) [2022-09-30]: DOI: 10.19398/j.att.202204017.
doi: 10.19398/j.att.202204017
LI Meiqi, SHAO Min, AN Yuan, et al. Hydrolysis properties of reactive dyes in liquid paraffin non-aqueous medium system[J/OL]. Advanced Textile Technology: 2022-06-13(1-7). DOI:10.19398/j.att.202204017.
doi: 10.19398/j.att.202204017
[23] 乐一鸣, 李桂贞, 朱正华. 乙烯砜染料水解动力学及其反应机理的研究[J]. 华东化工学院学报, 1988(1):37-45.
LE Yimin, LI Guizhen, ZHU Zhenhua. Study on hydrolysis kinetics and reaction mechanism of vinyl sulfone dyes[J]. Journal of East China University of Science and Technology, 1988(1):37-45.
[24] 于世林. 高效液相色谱方法与应用[M]. 北京: 化学工业出版社, 2000:71.
YU Shilin. High performance liquid chromatography methods and applications[M]. Beijing: Chemical Industry Press, 2000:71.
[25] 何瑾馨. 染料化学[M]. 北京: 中国纺织出版社, 2009: 187-194.
HE Jinxin. Dye chemistry[M]. Beijing: China Textile & Apparel Press, 2009: 187-194.
[26] 宋心远, 沈煜如. 活性染料染色[M]. 北京: 中国纺织出版社, 2019: 70-75.
SONG Xinyuan, SHEN Yuru. Dyeing with reactive dyes[M]. Beijing: China Textile & Apparel Press, 2019: 70-75.
[27] LI M Q, FAN J, AN Y, et al. Thermodynamic characteristics of cotton dyeing with reactive dyes in non-aqueous media[J/OL]. Journal of The Textile Institute, 2022. DOI:10.1080/00405000.2022.210503.
doi: 10.1080/00405000.2022.210503
[1] 张帅, 房宽峻, 刘秀明, 乔曦冉. 活性染料结构对彩色聚合物纳米球性能的影响[J]. 纺织学报, 2022, 43(12): 96-101.
[2] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[3] 乔曦冉, 房宽峻, 刘秀明, 巩继贤, 张帅, 张敏. 羟乙基甲基纤维素改性对棉和锦纶织物表面性质的差异性影响[J]. 纺织学报, 2022, 43(11): 127-132.
[4] 张典典, 于梦楠, 李敏, 刘明明, 付少海. 基于聚合物微球接枝硅油的超滑棉织物制备及其防污性能[J]. 纺织学报, 2022, 43(10): 119-125.
[5] 吴帆, 李勇, 陈晓川, 汪军, 徐敏俊. 基于三维编织模型的棉纤维集合体压缩过程有限元建模与仿真[J]. 纺织学报, 2022, 43(09): 89-94.
[6] 杨文博, 张傲洁, 刘幽燕, 李青云. 聚氨酯泡沫固定化生物体系对活性蓝4的吸附脱色[J]. 纺织学报, 2022, 43(08): 132-139.
[7] 倪敬达. 给棉方式对高产梳棉机刺辊梳理效果的影响[J]. 纺织学报, 2022, 43(08): 7-11.
[8] 张晓程, 周彦, 田卫国, 乔昕, 贾锋伟, 许丽丽, 张金明, 张军. 废旧棉/涤混纺织物的组分快速分离及其含量测定[J]. 纺织学报, 2022, 43(07): 1-8.
[9] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[10] 李娜, 王晓, 李振宝, 李佥, 杜冰. 基于腺嘌呤核苷酸单体的光接枝生态阻燃棉织物制备及其性能[J]. 纺织学报, 2022, 43(07): 97-103.
[11] 杨尧, 程伟, 余圆圆, 王强, 王平, 周曼. 抗菌和防细菌黏附整理剂在棉织物改性中的应用[J]. 纺织学报, 2022, 43(07): 104-110.
[12] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
[13] 李平阳, 付灿, 董玲玲. 阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2022, 43(06): 107-114.
[14] 王宗乾, 程绿竹, 金鲜花, 夏丽萍. 基于紫外光谱法的纯棉织物中氯菊酯含量检测方法[J]. 纺织学报, 2022, 43(06): 127-132.
[15] 肖琪, 王瑞, 张淑洁, 孙红玉, 王静茹. 基于ABAQUS的涤/棉混纺机织物起球过程有限元仿真[J]. 纺织学报, 2022, 43(06): 70-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .