纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 1-10.doi: 10.13475/j.fzxb.20240405201
• 纤维材料 • 下一篇
GUO Yuqing, QU Yun, ZHANG Liping, SUN Jie(
)
摘要: 为充分掌握芳纶纳米(ANFs)特性及其湿法纺丝可加工性,以对位芳纶纤维(PPTA)为原料采用碱溶去质子化法制备ANFs/二甲基亚砜(DMSO)分散液,分析了质子化反应过程中PPTA纤维随反应周期的演变过程,并系统探讨了制备周期对ANFs微观形貌结构以及ANFs/DMSO分散液流变性能的影响规律,进而采用湿法纺丝方法组装制备纯纺ANFs纤维并考察了纺丝液中ANFs制备周期对纯纺ANFs纤维力学强度的影响。结果表明:所制得ANFs呈枝状蔓延结构,具有较大的长径比,随质子化反应周期延长,纳米纤维长径比有所降低;不同反应周期分散液模量均表现为非频率依赖性,且储能模量与损耗模量比值均大于1,适合采用湿法纺丝加工方式进行组装;随反应周期延长,制得分散液表观黏度呈明显下降趋势,过度反应会使其可纺性变差;随纺丝液中ANFs制备周期延长,组装制得的纯纺ANFs纤维的强度呈明显下降趋势,其中以制备周期为3 d的ANFs对应组装制得的纯纺纤维力学性能最优,断裂强度和模量分别可达151.84 MPa、6.23 GPa。
中图分类号:
| [1] | WANG L, ZHANG M, YANG B, et al. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano, 2020, 14(8): 10633-10647. |
| [2] | 燕芮. 对位芳纶纳米纤维/熔喷非织造复合过滤材料的制备及性能研究[D]. 上海: 东华大学, 2021: 2-3. |
| YAN Rui. Preparation and Performance Study of Para-aramid Nanofiber/Meltblown Nonwoven Composite Filter Material[D]. Shanghai: Donghua University, 2021: 2-3. | |
| [3] | 刘宇升, 路玉琢, 张田, 等. 芳纶滤料的粉尘过滤性能[J]. 纺织高校基础科学学报, 2023, 36(5): 16-22,30. |
| LIU Yusheng, LU Yuzhuo, ZHANG Tian, et al. Dust Filtration Performance of Aramid Filter Media[J]. Basic Sciences Journal of Textile Universities, 2023, 36(5): 16-22,30. | |
| [4] | 孙亚鑫, 马丕波. 芳纶纤维衬纬结构纬编织物的防刺性能[J]. 纺织高校基础科学学报, 2022, 35(1): 1-6. |
| SUN Yaxin, MA Pibo. Puncture resistance of weft-inserted weft-knitted fabrics made of aramid fibers[J]. Basic Sciences Journal of Textile Universities, 2022, 35(1): 1-6. | |
| [5] | 翟媛媛, 刘艳君, 赵瑞, 等. 芳纶纬编增强体复合材料的力学性能[J]. 纺织高校基础科学学报, 2020, 33(3): 8-12. |
| ZHAI Yuanyuan, LIU Yanjun, ZHAO Rui, et al. Mechanical properties of aramid weft-knitted reinforced composites[J]. Basic Sciences Journal of Textile Universities, 2020, 33(3): 8-12. | |
| [6] |
YANG M, CAO K Q, SUI L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954.
doi: 10.1021/nn2014003 pmid: 21800822 |
| [7] | 杨斌. 芳纶纳米纤维高效制备及其在纸基绝缘材料中的应用[D]. 西安: 西北工业大学, 2022: 31-45. |
| YANG Bin. Efficient preparation of aramid nanofibers and their application in paper-based insulating mate-rials[D]. Xi'an: Northwestern Polytechnical University, 2022: 31-45. | |
| [8] | GAO J, HAN G J, SONG J Z, et al. Customizing 3D thermally conductive skeleton by 1D aramid Nanofiber/2D graphene for high-performance phase change composites with excellent solar-to-thermal conversion ability[J]. Materials Today Physics, 2022, 27: 1-10. |
| [9] | CAO W X, YANG L, QI X D, et al. Carbon nanotube wires sheathed by aramid nanofibers[J]. Advanced Functional Materials, 2017, 27(34): 1-11. |
| [10] |
陈纤, 李猛猛, 赵昕, 等. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23.
doi: 10.13475/j.fzxb.20201102007 |
|
CHEN Xian, LI Mengmeng, ZHAO Xin, et al. Preparation and microstructure control of nano-aramid aerogel fibers[J]. Journal of Textile Research, 2021, 42(11): 17-23.
doi: 10.13475/j.fzxb.20201102007 |
|
| [11] | 庹星星. 对位芳纶纳米纤维复合膜的制备与性能研究[D]. 武汉: 武汉纺织大学, 2017: 4-5. |
| TU Xingxing. Research on the preparation and properties of para-aramid nanofiber composite mem-brane[D]. Wuhan: Wuhan Textile University, 2017: 4-5. | |
| [12] | CHEN S Q, WANG Y D, FEI B, et al. Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane[J]. Chemical Engineering Journal, 2022, 430: 1-10. |
| [13] | YANG B, WANG L, ZHANG M Y, et al. Timesaving, high-efficiency approaches to fabricate aramid nano-fibers[J]. ACS Nano, 2019, 13(7): 7886-7897. |
| [14] | HUANG F W, YANG Q C, JIA L C, et al. Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 426: 131288. |
| [15] | 赵婷婷. 聚间苯二甲酰间苯二胺/离子液体浓溶液的流变行为及其湿法纺丝的研究[D]. 上海: 东华大学, 2009: 71-75. |
| ZHAO Tingting. Research on the rheological behavior of poly(isophthaloyl isophthalamide)/ionic liquid concentrated solution and its wet spinning process[D]. Shanghai: Donghua University, 2009: 71-75. | |
| [16] | 刘柳薪. 基于过渡金属碳化物的导电复合纤维及织物的结构设计与性能研究[D]. 北京: 北京化工大学, 2023: 53-54. |
| LIU Liuxin. Research on the structural design and performance of conductive composite fibers and fabrics based on transition metal carbides[D]. Beijing: Beijing University of Chemical Technology, 2023: 53-54. | |
| [17] | YANG B, ZHANG M, LU Z, et al. Toward improved performances of para-aramid (PPTA) paper-based nanomaterials via aramid nanofibers (ANFs) and ANFs-film[J]. Composites Part B: Engineering, 2018, 154: 166-174. |
| [1] | 乔思杰, 邢桐贺, 童爱心, 史芷丞, 潘恒, 刘可帅, 余豪, 陈凤翔. 不同聚乳酸材料的性能对比[J]. 纺织学报, 2025, 46(03): 27-33. |
| [2] | 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48. |
| [3] | 王彪, 李源, 董杰, 张清华. 热亚胺化中应力对聚酰亚胺纤维结构和性能的影响[J]. 纺织学报, 2025, 46(03): 1-8. |
| [4] | 王小艳, 杨书康, 肖国威, 杜金梅, 许长海. 光响应螺噁嗪掺杂长余辉发光纤维的制备及其性能[J]. 纺织学报, 2025, 46(02): 1-9. |
| [5] | 李慧敏, 刘淑强, 杜琳琳, 张曼, 吴改红. 玄武岩/聚酰亚胺三维间隔机织物的参数化建模及高温环境传热数值模拟[J]. 纺织学报, 2025, 46(01): 87-94. |
| [6] | 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88. |
| [7] | 贾笑娅, 王蕊宁, 侯宵, 何彩婷, 刘杰, 孙润军, 王秋实. 多相剪切增稠液增强柔性层合结构防刺材料的制备及其性能[J]. 纺织学报, 2024, 45(10): 113-121. |
| [8] | 罗梦颖, 陈慧君, 夏明, 王栋, 李沐芳. 弹性导电复合纤维的制备及其应变与温度传感性能[J]. 纺织学报, 2024, 45(10): 9-15. |
| [9] | 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106. |
| [10] | 胥家辉, 郭肖青, 王伟, 王怀芳, 张传杰, 宫兆庆. 海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制[J]. 纺织学报, 2024, 45(06): 16-22. |
| [11] | 郑晓頔, 盛平厚, 蒋佳岑, 李睿, 焦红娟, 邱志成. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(03): 19-27. |
| [12] | 魏义慧, 张宇静, 邓辉话, 邓庆辉, 陈浩锵, 张须臻, 于斌, 朱斐超. 高熔融指数聚乙烯母粒的制备及其红外透射熔喷材料的可纺性[J]. 纺织学报, 2024, 45(02): 28-35. |
| [13] | 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9. |
| [14] | 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40. |
| [15] | 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9. |
|
||