纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 41-48.doi: 10.13475/j.fzxb.20240402901
刘锦锋1,2, 杜康存1,2, 肖畅1,2, 付少海1,2, 张丽平1,2(
)
LIU Jinfeng1,2, DU Kangcun1,2, XIAO Chang1,2, FU Shaohai1,2, ZHANG Liping1,2(
)
摘要: 为改善热塑性聚氨酯(TPU)作为应力应变传感纤维基材时传感灵敏度不足的问题,以二维过渡金属碳化物/碳氮化物(MXene)为导电填料,TPU为纤维基材,通过湿法纺丝制备了多孔MXene/TPU应力应变传感纤维,并研究了TPU和MXene不同占比对纤维结构和性能的影响。结果表明:当导电填料MXene质量分数为15.09%时,MXene/TPU纤维具有较好的力学性能,断裂强度为2.12 MPa,断裂伸长率为622%;该纤维具有良好的导电性能,其电导率为0.86 S/m,在10%和50%的拉伸应变下其灵敏度分别达到20.45和151.12,且经过500 s的循环拉伸后电阻信号仍具有较好的稳定性。
中图分类号:
| [1] | 程芳华, 于云飞, 高嘉辰, 等. 热塑性聚氨酯/碳纳米管湿纺导电纳米复合纤维的应变响应行为研究[J]. 塑料科技, 2018, 46(9):56-60. |
| CHENG Fanghua, YU Yunfei, GAO Jiachen, et al. Study on strain response behavior of thermoplastic poyurethane/carbon nanotube wet-spun conductive nano-composite fibers[J]. Plastics Science and Technology, 2018, 46 (9): 56-60. | |
| [2] | LAN L Y, JIANG C M, YAO Y, et al. A stretchable and conductive fiber for multifunctional sensing and energy harvesting[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.105954. |
| [3] | COSTALIN M, MJEJRI I, PENIN N, et al. Films of directionally oriented carbon nanotubes as counter electrodes for electrochromic devices[J]. The Journal of Physics and Chemistry of Solids, 2021. DOI: 10.1016/j.jpcs.2021.110035. |
| [4] | ZHANG H X, WU W, MA H, et al. Hollow graphene fibres of highly ordered structure via coaxial wet spinning with application to multi-functional flexible wear-ables[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2021.126193. |
| [5] | ZHANG X H, LU W B, ZHOU G H, et al. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902028. |
| [6] | 郑少明, 赖祥辉, 林本术. 导电纤维的发展与应用[J]. 中国纤检, 2016(9):143-144. |
| ZHENG Shaoming, LAI Xianghui, LIN Benshu. Development and application of conductive fibers[J]. China Fiber Inspection, 2016 (9): 143-144. | |
| [7] | 宋理阳, 韩玮屹, 彭军, 等. 高灵敏度MXene基纤维传感器的制备及性能[J]. 精细化工, 2024, 41(10):2158-2163,2179. |
| SONG Liyang, HAN Weiyi, PENG Jun, et al. Preparation and performance of high-sensitivity MXene-based fiber sensor[J]. Fine Chemicals, 2024, 41(10):2158-2163,2179. | |
| [8] | 薛超, 朱浩, 杨晓川, 等. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(7):29-35. |
| XUE Chao, ZHU Hao, YANG Xiaochuan, et al. Preparation and properties of polyurethane-based carbon nanotubes-liquid metal conductive fibers[J]. Journal of Textile Research, 2022, 43 (7): 29-35. | |
| [9] | 顾琴, 杨通辉, 胡光凯, 等. AgNPs/TPU导电纤维的制备及性能研究[J]. 合成纤维工业, 2023, 46(3):27-33. |
| GU Qin, YANG Tonghui, HU Guangkai, et al. Preparation and properties of AgNPs/TPU conductive fibers[J]. Synthetic Fiber Industry, 2023, 46 (3): 27-33. | |
| [10] | 贺芃鑫, 蒲海红, 宋柏青, 等. 聚氨酯/导电炭黑复合纤维的制备及其柔性电热性能[J]. 纺织高校基础科学学报, 2022, 35(1):74-80. |
| HE Pengxin, PU Haihong, SONG Baiqing, et al. Preparation and flexible electrothermal properties of polyurethane/conductive carbon black composite fibers[J]. Journal of Basic Science of Textile University, 2022, 35 (1): 74-80. | |
| [11] | MICHAEL N, MURAT K, VOLKER P, et al. Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4207-4207. |
| [12] | MICHAEL N, VADYM N M, MICHEL W B, et al. MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005. |
| [13] | FU L, XIA W. MAX Phases asnanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications[J]. Advanced Engineering Materials, 2021. DOI: 10.1002/adem.202001191. |
| [14] | BABAK A, MARIA R. L, YURY G. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Materials, 2017, 16(10):34-50. |
| [15] | PRASHANT D. A comprehensive overview of MXene-based anode materials for univalent metal ions (Li+, Na+, and K+) and bivalent zinc ion capacitor application[J]. Chemistry Select, 2023. DOI: 10.1002/slct.202300018. |
| [16] | HO D H, CHOI YY, JO S B, et al. Sensing with MXenes: progress and prospects[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202005846. |
| [17] | SU T Y, LIU N S, GAO Y H, et al. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106151. |
| [1] | 王小艳, 杨书康, 肖国威, 杜金梅, 许长海. 光响应螺噁嗪掺杂长余辉发光纤维的制备及其性能[J]. 纺织学报, 2025, 46(02): 1-9. |
| [2] | 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88. |
| [3] | 罗梦颖, 陈慧君, 夏明, 王栋, 李沐芳. 弹性导电复合纤维的制备及其应变与温度传感性能[J]. 纺织学报, 2024, 45(10): 9-15. |
| [4] | 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106. |
| [5] | 胥家辉, 郭肖青, 王伟, 王怀芳, 张传杰, 宫兆庆. 海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制[J]. 纺织学报, 2024, 45(06): 16-22. |
| [6] | 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150. |
| [7] | 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32. |
| [8] | 狄纯秋, 郭静, 管福成, 相玉龙, 单继成. 双金属离子交联海藻酸盐复合相变纤维的制备与性能[J]. 纺织学报, 2023, 44(05): 54-62. |
| [9] | 顾力文, 阮艳雯, 李浩. 基于柔性选择性激光烧结3D打印技术的服装研发[J]. 纺织学报, 2023, 44(04): 154-164. |
| [10] | 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86. |
| [11] | 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93. |
| [12] | 杜璇, 丁长坤, 岳程飞, 苏杰梁, 闫旭焕, 程博闻. 凝固浴对再生胶原纤维结构与性能的影响[J]. 纺织学报, 2022, 43(09): 58-63. |
| [13] | 杨春利, 周伟贤, 梁京龙, 林桂圳, 刘杰, 倪延朋, 刘云, 商胜龙, 朱平. 磁场诱导结构生色海藻酸钙纤维的快速制备及其性能[J]. 纺织学报, 2022, 43(09): 64-69. |
| [14] | 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35. |
| [15] | 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68. |
|
||