纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 41-48.doi: 10.13475/j.fzxb.20240402901

• 纤维材料 • 上一篇    下一篇

多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能

刘锦锋1,2, 杜康存1,2, 肖畅1,2, 付少海1,2, 张丽平1,2()   

  1. 1.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    2.江苏省纺织品数字喷墨印花工程技术研究中心, 江苏 无锡 214122
  • 收稿日期:2024-04-12 修回日期:2024-08-16 出版日期:2025-03-15 发布日期:2025-04-16
  • 通讯作者: 张丽平(1985—),女,教授,博士。主要研究方向为功能纤维材料。E-mail: zhanglp@jiangnan.edu.cn
  • 作者简介:刘锦锋(2000—),男,硕士生。主要研究方向为智能可穿戴材料。
  • 基金资助:
    江苏省自然科学基金项目(BK20211240);江南大学大学生创新创业训练项目(202410295195Y)

Preparation of porous MXene/thermoplastic polyurethane fiber and its stress-strain sensing performance

LIU Jinfeng1,2, DU Kangcun1,2, XIAO Chang1,2, FU Shaohai1,2, ZHANG Liping1,2()   

  1. 1. Key Laboratory of Eco-Textiles ( Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
  • Received:2024-04-12 Revised:2024-08-16 Published:2025-03-15 Online:2025-04-16

摘要: 为改善热塑性聚氨酯(TPU)作为应力应变传感纤维基材时传感灵敏度不足的问题,以二维过渡金属碳化物/碳氮化物(MXene)为导电填料,TPU为纤维基材,通过湿法纺丝制备了多孔MXene/TPU应力应变传感纤维,并研究了TPU和MXene不同占比对纤维结构和性能的影响。结果表明:当导电填料MXene质量分数为15.09%时,MXene/TPU纤维具有较好的力学性能,断裂强度为2.12 MPa,断裂伸长率为622%;该纤维具有良好的导电性能,其电导率为0.86 S/m,在10%和50%的拉伸应变下其灵敏度分别达到20.45和151.12,且经过500 s的循环拉伸后电阻信号仍具有较好的稳定性。

关键词: 二维过渡金属碳化物/碳氮化物, 热塑性聚氨酯, 导电纤维, 湿法纺丝, 应力应变传感

Abstract:

Objective In recent years, there has been a surge in the research of flexible sensor devices, and owing to their lightweight, flexibility, and biocompatibility, they became a popular topic of scholarly investigation. These devices have found widespread application in flexible sensing, actuators, and wearable devices. However, in the realm of stress and strain sensing, fiber sensors often display poor resilience and low sensing sensitivity, which significantly limit their use and growth in this field. Therefore, thermoplastic polyurethane(TPU) is used as the fiber substrate and Ti3C2Tx MXene is used as the conductive filler to prepare a porous stress and strain sensing fiber with good resilience and high sensitivity.

Method The honeycomb-like structure of porous stress-strain sensing fibers was prepared by wet spinning, using the different solubilities of N,N-dimethylformamide (DMF) in water and isopropanol (IPA) to delay the solvent exchange process between the spinning solution and the coagulation bath. Flexible sensing fibers with high sensitivity and good resilience were achieved by adjusting the loading amount of MXene on the fibers. The influences of MXene addition on the microstructure, thermal stability, mechanical properties and electrical properties of the fibers were studied, and this fiber was applied to the detection of human motion.

Results The porous thermoplastic polyurethane-based conductive fibers were successfully obtained through wet spinning. In the cross section, TPU fiber presents a honeycomb-like structure, and the pores of MXene/TPU fiber are expanded by virtue of the addition of MXene, showing a non-uniform pore structure. The MXene nanosheets are successfully attached to these pores and build a good conductive network. At the same time, MXene is also embedded on the fiber surface to cause the fiber surface be flat tened. The Ti elements in MXene are evenly dispersed on the fiber. In the thermal stability analysis, the addition of MXene led to the advance of the thermal cracking peak from 430 ℃ to 310 ℃ and 400 ℃, and the increase of the MXene load increased the fiber residual mass percentage from 9.16% to 17.24%, 21.09%, 23.57% and 26.21%. The breaking strength of TPU fiber is 11.16 MPa, and the elongation at break is 1 257%, with the increase of MXene load, the mechanical properties of the fiber decrease. The breaking strength of MXene/TPU fiber is 2.12 MPa, and the elongation at break is 622%. It still maintains a certain breaking strength and a long elongation at break. The conductivity of MXene/TPU fiber is 0.86 S/m, which is significantly improved compared with other fibers. When the strain of MXene/TPU fiber is 10% and 50%, the sensing sensitivity (GF) is 20.45 and 151.12, respectively. At the same time, it still maintains a relatively stable resistance recovery after 500 s cyclic stretching at 50% strain. Compared with the stress-strain sensing fibers reported, MXene/TPU fiber has higher sensing sensitivity at the same strain. MXene/TPU fiber is applied to wrist and finger joint motion detection, the fiber was tested for 10 cycles, exhibiting a stable electrical signal transmission effect.

Conclusion The thermoplastic polyurethane-based stress-strain sensing fiber with high sensing sensitivity under low strain conditions is prepared by modulating coagulation bath to strengthen the solvent exchange process in wet spinning. It solves the problem that the stress-strain sensing fiber is low in sensitivity and hard to detect under small strain applications. It has a broad application prospect in human motion detection.

Key words: MXene, thermoplastic polyurethane, conductive fiber, wet spinning, stress-strain sensing

中图分类号: 

  • TQ342.83

表1

纺丝液配方"

样品
编号
TPU质量
分数/%
MXene质量浓度/
(mg·mL-1)
MXene质量
分数/%
1# 22.50 0 0
2# 22.50 10.00 4.26
3# 22.50 20.00 8.16
4# 22.50 30.00 11.76
5# 22.50 40.00 15.09

图1

纤维制备流程图"

图2

TPU和MXene/TPU纤维扫描电镜照片"

图3

5#纤维截面照片及其Ti 元素分布图"

图4

TPU和MXene/TPU纤维热稳定性"

图5

TPU和MXene/TPU纤维力学性能"

图6

5#纤维应变与相对电阻变化曲线"

图7

纤维拉伸-释放过程导电模型"

图8

5#纤维不同应变下相对电阻变化循环曲线"

图9

50%应变下相对电阻变化循环曲线"

表2

已报道应力应变传感纤维灵敏度值"

已报道文献 GF
10%应变 30%应变 50%应变
[7] 84.0
[8] 1.0 2.3 6.0
[9] 7.0 23.1 42.0
5#纤维 20.45 41.12 151.12

图10

手腕和手指运动监测"

[1] 程芳华, 于云飞, 高嘉辰, 等. 热塑性聚氨酯/碳纳米管湿纺导电纳米复合纤维的应变响应行为研究[J]. 塑料科技, 2018, 46(9):56-60.
CHENG Fanghua, YU Yunfei, GAO Jiachen, et al. Study on strain response behavior of thermoplastic poyurethane/carbon nanotube wet-spun conductive nano-composite fibers[J]. Plastics Science and Technology, 2018, 46 (9): 56-60.
[2] LAN L Y, JIANG C M, YAO Y, et al. A stretchable and conductive fiber for multifunctional sensing and energy harvesting[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.105954.
[3] COSTALIN M, MJEJRI I, PENIN N, et al. Films of directionally oriented carbon nanotubes as counter electrodes for electrochromic devices[J]. The Journal of Physics and Chemistry of Solids, 2021. DOI: 10.1016/j.jpcs.2021.110035.
[4] ZHANG H X, WU W, MA H, et al. Hollow graphene fibres of highly ordered structure via coaxial wet spinning with application to multi-functional flexible wear-ables[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2021.126193.
[5] ZHANG X H, LU W B, ZHOU G H, et al. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902028.
[6] 郑少明, 赖祥辉, 林本术. 导电纤维的发展与应用[J]. 中国纤检, 2016(9):143-144.
ZHENG Shaoming, LAI Xianghui, LIN Benshu. Development and application of conductive fibers[J]. China Fiber Inspection, 2016 (9): 143-144.
[7] 宋理阳, 韩玮屹, 彭军, 等. 高灵敏度MXene基纤维传感器的制备及性能[J]. 精细化工, 2024, 41(10):2158-2163,2179.
SONG Liyang, HAN Weiyi, PENG Jun, et al. Preparation and performance of high-sensitivity MXene-based fiber sensor[J]. Fine Chemicals, 2024, 41(10):2158-2163,2179.
[8] 薛超, 朱浩, 杨晓川, 等. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(7):29-35.
XUE Chao, ZHU Hao, YANG Xiaochuan, et al. Preparation and properties of polyurethane-based carbon nanotubes-liquid metal conductive fibers[J]. Journal of Textile Research, 2022, 43 (7): 29-35.
[9] 顾琴, 杨通辉, 胡光凯, 等. AgNPs/TPU导电纤维的制备及性能研究[J]. 合成纤维工业, 2023, 46(3):27-33.
GU Qin, YANG Tonghui, HU Guangkai, et al. Preparation and properties of AgNPs/TPU conductive fibers[J]. Synthetic Fiber Industry, 2023, 46 (3): 27-33.
[10] 贺芃鑫, 蒲海红, 宋柏青, 等. 聚氨酯/导电炭黑复合纤维的制备及其柔性电热性能[J]. 纺织高校基础科学学报, 2022, 35(1):74-80.
HE Pengxin, PU Haihong, SONG Baiqing, et al. Preparation and flexible electrothermal properties of polyurethane/conductive carbon black composite fibers[J]. Journal of Basic Science of Textile University, 2022, 35 (1): 74-80.
[11] MICHAEL N, MURAT K, VOLKER P, et al. Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4207-4207.
[12] MICHAEL N, VADYM N M, MICHEL W B, et al. MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005.
[13] FU L, XIA W. MAX Phases asnanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications[J]. Advanced Engineering Materials, 2021. DOI: 10.1002/adem.202001191.
[14] BABAK A, MARIA R. L, YURY G. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Materials, 2017, 16(10):34-50.
[15] PRASHANT D. A comprehensive overview of MXene-based anode materials for univalent metal ions (Li+, Na+, and K+) and bivalent zinc ion capacitor application[J]. Chemistry Select, 2023. DOI: 10.1002/slct.202300018.
[16] HO D H, CHOI YY, JO S B, et al. Sensing with MXenes: progress and prospects[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202005846.
[17] SU T Y, LIU N S, GAO Y H, et al. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106151.
[1] 王小艳, 杨书康, 肖国威, 杜金梅, 许长海. 光响应螺噁嗪掺杂长余辉发光纤维的制备及其性能[J]. 纺织学报, 2025, 46(02): 1-9.
[2] 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88.
[3] 罗梦颖, 陈慧君, 夏明, 王栋, 李沐芳. 弹性导电复合纤维的制备及其应变与温度传感性能[J]. 纺织学报, 2024, 45(10): 9-15.
[4] 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106.
[5] 胥家辉, 郭肖青, 王伟, 王怀芳, 张传杰, 宫兆庆. 海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制[J]. 纺织学报, 2024, 45(06): 16-22.
[6] 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150.
[7] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[8] 狄纯秋, 郭静, 管福成, 相玉龙, 单继成. 双金属离子交联海藻酸盐复合相变纤维的制备与性能[J]. 纺织学报, 2023, 44(05): 54-62.
[9] 顾力文, 阮艳雯, 李浩. 基于柔性选择性激光烧结3D打印技术的服装研发[J]. 纺织学报, 2023, 44(04): 154-164.
[10] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[11] 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93.
[12] 杜璇, 丁长坤, 岳程飞, 苏杰梁, 闫旭焕, 程博闻. 凝固浴对再生胶原纤维结构与性能的影响[J]. 纺织学报, 2022, 43(09): 58-63.
[13] 杨春利, 周伟贤, 梁京龙, 林桂圳, 刘杰, 倪延朋, 刘云, 商胜龙, 朱平. 磁场诱导结构生色海藻酸钙纤维的快速制备及其性能[J]. 纺织学报, 2022, 43(09): 64-69.
[14] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[15] 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!