纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 1-10.doi: 10.13475/j.fzxb.20240405201

• 纤维材料 •    下一篇

芳纶纳米纤维制备及其可纺性

郭羽晴, 屈芸, 张利平, 孙洁()   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2024-04-19 修回日期:2024-09-11 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 孙洁(1979—),女,副教授,博士。主要研究方向为储能复合材料研究。E-mail: sunjie@jiangnan.edu.cn
  • 作者简介:郭羽晴(2000—),女,硕士生。主要研究方向为纤维电极材料。
  • 基金资助:
    国家自然科学基金项目(51903109)

Preparation and spinnability of aramid nanofibers

GUO Yuqing, QU Yun, ZHANG Liping, SUN Jie()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2024-04-19 Revised:2024-09-11 Published:2025-04-15 Online:2025-06-11

摘要: 为充分掌握芳纶纳米(ANFs)特性及其湿法纺丝可加工性,以对位芳纶纤维(PPTA)为原料采用碱溶去质子化法制备ANFs/二甲基亚砜(DMSO)分散液,分析了质子化反应过程中PPTA纤维随反应周期的演变过程,并系统探讨了制备周期对ANFs微观形貌结构以及ANFs/DMSO分散液流变性能的影响规律,进而采用湿法纺丝方法组装制备纯纺ANFs纤维并考察了纺丝液中ANFs制备周期对纯纺ANFs纤维力学强度的影响。结果表明:所制得ANFs呈枝状蔓延结构,具有较大的长径比,随质子化反应周期延长,纳米纤维长径比有所降低;不同反应周期分散液模量均表现为非频率依赖性,且储能模量与损耗模量比值均大于1,适合采用湿法纺丝加工方式进行组装;随反应周期延长,制得分散液表观黏度呈明显下降趋势,过度反应会使其可纺性变差;随纺丝液中ANFs制备周期延长,组装制得的纯纺ANFs纤维的强度呈明显下降趋势,其中以制备周期为3 d的ANFs对应组装制得的纯纺纤维力学性能最优,断裂强度和模量分别可达151.84 MPa、6.23 GPa。

关键词: 芳纶纳米纤维, 高性能纤维, 湿法纺丝, 可纺性, 碱溶去质子化法, 流变性能

Abstract:

Objective Aramid nanofibers (ANFs) have become a favored composite skeleton reinforcement material in recent years due to their large aspect ratio, specific surface area, high surface energy, good dispersibility. It has been reported that the preparation cycle of aramid nanofibers using deprotonation is relatively long, and the reports on the deprotonation reaction cycle or reaction endpoint are not sufficiently uniform. The evolution mechanism of ANFs under different reaction cycles is not clear, and there is still a lack of research on their wet spinning processability. In order to fully grasp the characteristics of ANFs and their wet spinning processability, this research carried out a series of studies on ANFs with different reaction cycles.

Method Using poly-p-phenylene terephthamide(PPTA) fibers as raw materials, ANFs dimethy sulf-oxide(DMSO) dispersions were prepared through an alkaline solution deprotonation method. SEM was utilized to observe and analyze the evolution of PPTA fibers across the reaction cycles during the deprotonation process. The influence of the preparation period on the microstructure of ANFs was analyzed using SEM, TEM, Raman, and XRD tests. A rheometer was employed to test the rheological properties of the ANFs/DMSO dispersion, and the impact of reaction cycles on these properties was analyzed. Furthermore, the wet spinning method was used to assemble and prepare pure spun ANFs fibers, and the effect of the preparation cycle of ANFs in the spinning solution on the mechanical strength of pure spun ANFs fibers was investigated.

Results The ANFs produced exhibited a typical branching morphology with a large aspect ratio. It was found that as the protonation reaction cycle prolonged, the aspect ratio of nanofibers was decreased. The average diameter of ANFs prepared with a reaction period of 3 d was about 10.46 nm, and the aspect ratio was relatively large. However, excessively extending the reaction period to 9 d will significantly damage the main chemical structure of the fibers. The modulus of dispersed solutions at different reaction cycles exhibited no frequency dependence, and G'/G″ was greater than 1, making it suitable for assembly using wet spinning processing. As the reaction cycle prolonged, the apparent viscosity of the prepared dispersion showed a significant decline, indicating that excessive reaction would deteriorate its spinnability. Observing the microstructure of pure spun ANFs fibers assembled by wet spinning, it was found that PPTA polyanions in the dispersed solution were able to reconstruct their structure through protonation reduction reactions during the spinning solidification process. The formed aramid nanofibers was able to be arranged in an orderly manner along the fiber axis, with very good orientation regularity. As the preparation period of ANFs in the spinning solution prolonged, the strength of the assembled pure spun ANFs fibers showed a significant decrease. Among them, the AF-3 pure spun fibers assembled with a preparation period of 3 days correspond to the best mechanical properties, with fracture strength and modulus reaching 151.84 MPa and 6.23 GPa, respectively.

Conclusion The ANFs/DMSO dispersion prepared by deprotonation method has good wet spinning processability. During the wet spinning process, ANFs are oriented in an orderly manner along the fiber axis under the action of jet shear, and their structure can be reconstructed through protonation reduction during solidification. The assembled pure spun fibers have been proven to have good mechanical properties. The preparation cycle has an impact on the length and fineness of the prepared ANFs. The larger the aspect ratio of ANFs, the higher the strength and modulus of the assembled pure spun ANF fibers. Research has shown that ANFs can serve as reinforcing skeletons and material composites, laying the foundation for the design and development of composite fibers.

Key words: aramid nanofiber, high performance fiber, wet-spinning, spinnability, alkali dissolution deprotonation, rheological property

中图分类号: 

  • TS430

图1

ANFs分散液的制备及其纯纺纤维制备流程图"

图2

PPTA纤维微观形貌结构示意及其去质子过程"

图3

不同反应周期PPTA纤维的SEM照片(×3 000)"

图4

不同反应周期ANFs的TEM照片"

图5

不同反应周期ANFs的尺寸分布情况"

图6

不同反应周期ANFs的SEM照片(×50 000)"

图7

不同反应周期ANFs的化学结构"

图8

不同反应周期ANFs/DMSO的流变性能"

图9

不同反应周期ANFs所制纯纺纤维的表面照片"

图10

不同反应周期ANFs所制纯纺纤维的截面照片"

图11

PPTA、ANF-3以及AF-3化学结构比较"

图12

不同制备周期ANFs所制纯纺纤维的力学性能"

[1] WANG L, ZHANG M, YANG B, et al. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano, 2020, 14(8): 10633-10647.
[2] 燕芮. 对位芳纶纳米纤维/熔喷非织造复合过滤材料的制备及性能研究[D]. 上海: 东华大学, 2021: 2-3.
YAN Rui. Preparation and Performance Study of Para-aramid Nanofiber/Meltblown Nonwoven Composite Filter Material[D]. Shanghai: Donghua University, 2021: 2-3.
[3] 刘宇升, 路玉琢, 张田, 等. 芳纶滤料的粉尘过滤性能[J]. 纺织高校基础科学学报, 2023, 36(5): 16-22,30.
LIU Yusheng, LU Yuzhuo, ZHANG Tian, et al. Dust Filtration Performance of Aramid Filter Media[J]. Basic Sciences Journal of Textile Universities, 2023, 36(5): 16-22,30.
[4] 孙亚鑫, 马丕波. 芳纶纤维衬纬结构纬编织物的防刺性能[J]. 纺织高校基础科学学报, 2022, 35(1): 1-6.
SUN Yaxin, MA Pibo. Puncture resistance of weft-inserted weft-knitted fabrics made of aramid fibers[J]. Basic Sciences Journal of Textile Universities, 2022, 35(1): 1-6.
[5] 翟媛媛, 刘艳君, 赵瑞, 等. 芳纶纬编增强体复合材料的力学性能[J]. 纺织高校基础科学学报, 2020, 33(3): 8-12.
ZHAI Yuanyuan, LIU Yanjun, ZHAO Rui, et al. Mechanical properties of aramid weft-knitted reinforced composites[J]. Basic Sciences Journal of Textile Universities, 2020, 33(3): 8-12.
[6] YANG M, CAO K Q, SUI L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954.
doi: 10.1021/nn2014003 pmid: 21800822
[7] 杨斌. 芳纶纳米纤维高效制备及其在纸基绝缘材料中的应用[D]. 西安: 西北工业大学, 2022: 31-45.
YANG Bin. Efficient preparation of aramid nanofibers and their application in paper-based insulating mate-rials[D]. Xi'an: Northwestern Polytechnical University, 2022: 31-45.
[8] GAO J, HAN G J, SONG J Z, et al. Customizing 3D thermally conductive skeleton by 1D aramid Nanofiber/2D graphene for high-performance phase change composites with excellent solar-to-thermal conversion ability[J]. Materials Today Physics, 2022, 27: 1-10.
[9] CAO W X, YANG L, QI X D, et al. Carbon nanotube wires sheathed by aramid nanofibers[J]. Advanced Functional Materials, 2017, 27(34): 1-11.
[10] 陈纤, 李猛猛, 赵昕, 等. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23.
doi: 10.13475/j.fzxb.20201102007
CHEN Xian, LI Mengmeng, ZHAO Xin, et al. Preparation and microstructure control of nano-aramid aerogel fibers[J]. Journal of Textile Research, 2021, 42(11): 17-23.
doi: 10.13475/j.fzxb.20201102007
[11] 庹星星. 对位芳纶纳米纤维复合膜的制备与性能研究[D]. 武汉: 武汉纺织大学, 2017: 4-5.
TU Xingxing. Research on the preparation and properties of para-aramid nanofiber composite mem-brane[D]. Wuhan: Wuhan Textile University, 2017: 4-5.
[12] CHEN S Q, WANG Y D, FEI B, et al. Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane[J]. Chemical Engineering Journal, 2022, 430: 1-10.
[13] YANG B, WANG L, ZHANG M Y, et al. Timesaving, high-efficiency approaches to fabricate aramid nano-fibers[J]. ACS Nano, 2019, 13(7): 7886-7897.
[14] HUANG F W, YANG Q C, JIA L C, et al. Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 426: 131288.
[15] 赵婷婷. 聚间苯二甲酰间苯二胺/离子液体浓溶液的流变行为及其湿法纺丝的研究[D]. 上海: 东华大学, 2009: 71-75.
ZHAO Tingting. Research on the rheological behavior of poly(isophthaloyl isophthalamide)/ionic liquid concentrated solution and its wet spinning process[D]. Shanghai: Donghua University, 2009: 71-75.
[16] 刘柳薪. 基于过渡金属碳化物的导电复合纤维及织物的结构设计与性能研究[D]. 北京: 北京化工大学, 2023: 53-54.
LIU Liuxin. Research on the structural design and performance of conductive composite fibers and fabrics based on transition metal carbides[D]. Beijing: Beijing University of Chemical Technology, 2023: 53-54.
[17] YANG B, ZHANG M, LU Z, et al. Toward improved performances of para-aramid (PPTA) paper-based nanomaterials via aramid nanofibers (ANFs) and ANFs-film[J]. Composites Part B: Engineering, 2018, 154: 166-174.
[1] 乔思杰, 邢桐贺, 童爱心, 史芷丞, 潘恒, 刘可帅, 余豪, 陈凤翔. 不同聚乳酸材料的性能对比[J]. 纺织学报, 2025, 46(03): 27-33.
[2] 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48.
[3] 王彪, 李源, 董杰, 张清华. 热亚胺化中应力对聚酰亚胺纤维结构和性能的影响[J]. 纺织学报, 2025, 46(03): 1-8.
[4] 王小艳, 杨书康, 肖国威, 杜金梅, 许长海. 光响应螺噁嗪掺杂长余辉发光纤维的制备及其性能[J]. 纺织学报, 2025, 46(02): 1-9.
[5] 李慧敏, 刘淑强, 杜琳琳, 张曼, 吴改红. 玄武岩/聚酰亚胺三维间隔机织物的参数化建模及高温环境传热数值模拟[J]. 纺织学报, 2025, 46(01): 87-94.
[6] 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88.
[7] 贾笑娅, 王蕊宁, 侯宵, 何彩婷, 刘杰, 孙润军, 王秋实. 多相剪切增稠液增强柔性层合结构防刺材料的制备及其性能[J]. 纺织学报, 2024, 45(10): 113-121.
[8] 罗梦颖, 陈慧君, 夏明, 王栋, 李沐芳. 弹性导电复合纤维的制备及其应变与温度传感性能[J]. 纺织学报, 2024, 45(10): 9-15.
[9] 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106.
[10] 胥家辉, 郭肖青, 王伟, 王怀芳, 张传杰, 宫兆庆. 海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制[J]. 纺织学报, 2024, 45(06): 16-22.
[11] 郑晓頔, 盛平厚, 蒋佳岑, 李睿, 焦红娟, 邱志成. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(03): 19-27.
[12] 魏义慧, 张宇静, 邓辉话, 邓庆辉, 陈浩锵, 张须臻, 于斌, 朱斐超. 高熔融指数聚乙烯母粒的制备及其红外透射熔喷材料的可纺性[J]. 纺织学报, 2024, 45(02): 28-35.
[13] 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9.
[14] 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40.
[15] 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!