纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 128-134.doi: 10.13475/j.fzxb.20220804107

• 纺织工程 • 上一篇    下一篇

基于类骨骼肌结构的纱线基驱动器性能及应用

吴靖, 韩晨晨(), 高卫东   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2022-08-16 修回日期:2022-11-09 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 韩晨晨(1988—),女,副研究员,博士。主要研究方向为先进纺织技术的应用。E-mail:080400404@163.com。
  • 作者简介:吴靖(1999—),女,硕士生。主要研究方向为新型纺织材料的制备与应用。

Properties and applications of yarn-based actuators based on skeletalmuscle-like structure

WU Jing, HAN Chenchen(), GAO Weidong   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-08-16 Revised:2022-11-09 Published:2023-02-15 Online:2023-03-07

摘要:

针对纤维基驱动器结构稳定性较低、制备工艺复杂、难以实现产业化应用等问题,采用亲水性粘胶长丝与低熔点涤纶长丝,通过并线、倍捻、热定形的方法制备纱线基驱动器,利用在外界湿刺激条件下2种材料的非对称响应实现驱动功能。对该纱线基驱动器结构进行测试与表征,分析湿刺激下粘胶长丝与涤纶长丝协同响应驱动性能和循环回复效应的影响因素。结果表明:该纱线基驱动器表面为粘胶与涤纶长丝束呈多层级交替排布的类骨骼肌结构;在一定范围内,驱动器的驱动性能随着纱线捻度、线密度与粘胶长丝含量的增加而增大,单次循环内驱动器最大收缩应变可达83.15%,连续30次循环内最大收缩应变回复率可达90%以上,展现出优异的结构稳定性以及强大灵敏的响应驱动性和循环回复效应,在柔性机械臂、智能纺织品等开发领域具有广阔的应用前景。

关键词: 粘胶长丝, 涤纶长丝, 纱线基驱动器, 湿响应, 类骨骼肌结构, 驱动性能, 循环回复效应, 智能纺织品

Abstract:

Objective Artificial muscle actuators are highly desired for applications such as soft robotics, smart wearables and smart textiles due to their inherent flexibility and actuation properties similar to those of skeletalmuscle-like systems. The single component and poor structural stability of fiber-based actuators make it difficult to achieve industrial applications. As a result, yarn-based actuators with low yarn anisotropy and good mechanical properties owing to twisting have been developed. Among them, pneumatic actuators and electromagnetic motors provide low accuracy and bulky equipment, temperature-sensitive actuators prepared from shape memory alloys have high hysteresis under high temperature stimulation, and some moisture-sensitive actuators have low sensitivity, poor cycle recovery effectiveness, complex preparation processes and harsh experimental conditions. Therefore, there is a need for a yarn-based actuator with simple preparation process, stable structure, good cycle recovery effectiveness and promising possibility for industrialization.
Method Inspired by the skeletalmuscle-like systems, the research reported in this paper used hydrophilic viscose filaments and low melting point hydrophobic polyester filaments to prepare the yarn-based actuators by merging, doubling and low temperature thermal annealing. The actuation function of the actuator is achieved by using the asymmetric response of the two materials under external wet stimulating conditions. Specifically, under wet stimulation, the prepared yarn-based actuator using hydrophilic viscose filaments as the actuating source undergoes wet swelling untwisting and transmits torsional potential energy. During wetness reduction, the low melting point polyester filament acts as a spring frame and the fixed torsional deformation is reduced. The yarn-based actuator structure was characterized and the factors influencing the synergistic response of the viscose and polyester filaments to the actuation performance and cycle recovery effectiveness under wet stimulation were analyzed.
Results The results show that the yarn-based actuator has a hierarchical, alternating skeletalmuscle-like structure of viscose and polyester filament bundles (Fig. 2). During the preparation of the yarn, when the yarn was twisted to a critical level, the actuation performance increased with yarn twist, yarn density and viscose content (Fig. 3, Fig. 4 and Fig. 6), and the actuation cycle recovery effectiveness decreased with the increase of the yarn linear density and the viscose content (Fig. 5 and Fig. 7). The maximum contraction strain and maximum contraction stress within a single cycle reached 83.15% as shown in Fig. 6(a) and 9.61 cN as indicated in Fig. 6(b), respectively, and the maximum contraction strain and maximum contraction strain recovery rate >90% within 30 consecutive cycles with no significant fatigue loss during actuation and recovery (Fig.5 and Fig.7), confirming the advantages of the skeletalmuscle-like structure and demonstrating its stable actuation behavior. Depending on the relationship between the range of twist, the twist density, and the viscose content, yarn actuator parameters can be determined (Fig. 8). Sample 9 with 33 tex yarn density and 90% viscose content were twisted to 1 000 turn/m and 2 000 turn/m respectively, resulting in moisture-sensitive flexible robotic arms and smart textiles, such as the medical wound-healing material and humidity-regulating clothing(Fig. 9).
Conclusion The use of this type of yarn-based actuator with a skeletalmuscle-like structure improved the low sensitivity, poor cycle recovery effectiveness and harsh experimental conditions of the moisture-sensitive actuators. The characterization of macroscopic fiber and yarn as well as internal potential energy conversion illustrates the actuation mechanism of the actuation performance and reversion effectiveness, and this work serves as a theoretical benchmark for further enhancing yarn-based smart material properties. Additionally, the trial-preparation fabric actuators in the lab offer opportunities for higher-hierarchical deformation, multifunctional applications, and large-scale production of yarn-based actuators. The development of applications in cutting-edge industrial sectors such as smart textiles and pharmaceutical materials will be the main emphasis of the following phase, which will open up new possibilities and bring yarn-based actuators closer to everyday life.

Key words: viscose filament, polyester filament, yarn-based actuator, moisture-sensitive, skeletalmuscle-like structure, actuation property, cyclic strain recovery effect, smart textile

中图分类号: 

  • TS106.4

表1

纱线基驱动器规格参数"

样品编号 捻度/(捻·m-1) 纱线线密度/tex 粘胶长丝含量/%
1 500~1 500 9.9 66.7
2 500~1 500 19.8 66.7
3 500~1 500 29.7 66.7
4 500~1 500 39.6 66.7
5 500~2 000 33.0 50.0
6 500~2 000 33.0 60.0
7 500~2 000 33.0 70.0
8 500~2 000 33.0 80.0
9 500~2 000 33.0 90.0

图1

粘胶和涤纶长丝的热重曲线"

图2

粘胶与涤纶长丝束并线、倍捻和热定形样品及其各阶段状态下结构特征"

图3

驱动器单次循环内收缩应变随捻度的变化"

图4

驱动器单循环内最大收缩应变与最大收缩做功随线密度的变化"

图5

不同线密度驱动器最大收缩应变及回复率随循环次数变化关系"

图6

驱动器单循环内收缩驱动性能随粘胶长丝含量的变化"

图7

不同粘胶长丝含量驱动器最大收缩应变及回复率随循环次数的变化关系"

图8

驱动器最优参数范围选择"

图9

多层级类骨骼肌结构纱线基驱动器应用前景"

[1] LIU Zhongsheng, ZHANG Rui, XIAO Yicheng, et al. Somatosensitive film soft crawling robots driven by artificial muscle for load carrying and multi-terrain locomotion[J]. Materials Horizons, 2021. DOI: 10.1039/d1mh00457c.
doi: 10.1039/d1mh00457c
[2] JIEFENG S, TIGHE B, YINGXIANG L, et al. Twisted-and-coiled actuators with free strokes enable soft robots with programmable motions[J]. Soft Robotics, 2021, 8(2):213-225.
doi: 10.1089/soro.2019.0175
[3] 王勇, 曹吉强, 孙安彤, 等. 湿驱动仿生人工肌肉纤维材料的研究进展[J]. 棉纺织技术, 2022, 50(3):79-84.
WANG Yong, CAO Jiqiang, SUN Antong, et al. Research progress of wet-driven bionic artificial muscle fiber materials[J]. Cotton Textile Technology, 2022, 50(3): 79-84.
[4] LI Y, MIAO M H. Water-responsive artificial muscles from commercial viscose fibers without chemical treatment[J]. Materials Research Letters, 2020, 8(6):232-238.
doi: 10.1080/21663831.2020.1743787
[5] ALRAMMOUZ R, PODLECKI J, VENA A, et al. Highly porous and flexible capacitive humidity sensor based on self-assembled graphene oxide sheets on a paper substrate[J]. Sensors and Actuators B: Chemical, 2019. DOI:10.1016/j.snb.2019.126892.
doi: 10.1016/j.snb.2019.126892
[6] FOROUGHI J, SPINKS G M, WALLACE G G, et al. Torsional carbon nanotube artificial muscles[J]. Science, 2011, 334(6055):494-497.
doi: 10.1126/science.1211220 pmid: 21998253
[7] KIM S H, KWON C H, PARK K, et al. Bio-inspired, moisture-powered hybrid carbon nanotube yarn muscles[J]. Scientific Reports, 2016. DOI:10.1038/srep23016.
doi: 10.1038/srep23016
[8] WANG Y, MIAO M H. Helical shape linen artificial muscles responsive to water[J]. Smart Materials and Structures, 2021. DOI:10.1088/1361-665X/ac03c5.
doi: 10.1088/1361-665X/ac03c5
[9] CHEN P N, XU Y F, HE S S, et al. Hierarchically arranged helical fibre actuators driven by solvents and vapours[J]. Nature Nanotechnology, 2015. DOI:10.1038/nnano.2015.198.
doi: 10.1038/nnano.2015.198
[10] HAN B, ZHANG Y L, ZHU L, et al. Plasmonic-assisted graphene oxide artificial muscles[J]. Adv Mater, 2019. DOI: 10.1002/adma.201806386.
doi: 10.1002/adma.201806386
[11] PENG Y, SUN F, XIAO C, et al. Hierarchically structured and scalable artificial muscles for smart textiles[J]. ACS Applied Materials & Interfaces, 2021, 13(45):54386-54395.
[12] MU J, ANDRADE M J D, FANG S, et al. Sheath-run artificial muscles[J]. Science, 2019, 365(6449): 150-155.
doi: 10.1126/science.aaw2403 pmid: 31296765
[13] 张沁苇. 螺旋卷绕型纤维基人工肌肉的制备与致动特性研究[D]. 武汉: 华中科技大学, 2020:36-39.
ZHANG Qinwei. Preparation and actuation characteristics of spiral wound fiber-based artificial muscles[D]. Wuhan: Huazhong University of Science and Technology, 2020:36-39.
[1] 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95.
[2] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[3] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[4] 肖渊, 李倩, 张威, 胡汉春, 郭鑫雷. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10): 89-96.
[5] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[6] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
[7] 王成成, 龚筱丹, 王振, 马群旺, 张丽平, 付少海. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(05): 38-42.
[8] 李加双, 张丽平, 付少海. 双稳态电致变色离子凝胶的制备及其在织物上的应用[J]. 纺织学报, 2022, 43(02): 24-29.
[9] 李冬冬, 张成俊, 左小艳, 张弛, 朱里, 刘雅昆. 密绕线圈阵列结构对悬浮织针驱动性能的影响[J]. 纺织学报, 2021, 42(09): 156-162.
[10] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
[11] 徐晋, 杨鹏程, 肖渊, 胥光申. 织物表面导电线路喷射打印中微滴关键参数的视觉测量[J]. 纺织学报, 2021, 42(07): 137-143.
[12] 王航, 王冰心, 宁新, 曲丽君, 田明伟. 喷墨打印导电墨水及其智能电子纺织品研究进展[J]. 纺织学报, 2021, 42(06): 189-197.
[13] 梁家豪, 巫莹柱, 刘海东, 黄美林, 蔡瑞燕, 周俊俭, 谢权沛. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能[J]. 纺织学报, 2021, 42(06): 63-70.
[14] 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83.
[15] 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[7] 冯宪. 漫谈未来服装的发展方向[J]. 纺织学报, 2004, 25(02): 119 -120 .
[8] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[9] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[10] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .