纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 59-69.doi: 10.13475/j.fzxb.20241104702

• 特约专栏: 智能纤维与织物器件 • 上一篇    下一篇

纤维状水系锌离子电池的研究进展与展望

韩力杰, 刘樊(), 张其冲   

  1. 中国科学院苏州纳米技术与纳米仿生研究所 多功能材料与轻巧系统重点实验室, 江苏 苏州 215123
  • 收稿日期:2024-11-20 修回日期:2025-02-13 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 刘樊(1996—),男,特别研究助理,博士。研究方向为多功能纤维状器件与织物。E-mail: fliu2021@sinano.ac.cn
  • 作者简介:韩力杰(1995—),男,博士生。主要研究方向为纤维状水系功能纤维与织物。
  • 基金资助:
    国家自然科学基金项目(T2422028);国家自然科学基金项目(52473270);中国博士后科学基金项目(2024M763485)

Research progress and prospects of fiber-shaped aqueous zinc-ion batteries

HAN Lijie, LIU Fan(), ZHANG Qichong   

  1. Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
  • Received:2024-11-20 Revised:2025-02-13 Published:2025-05-15 Online:2025-06-18

摘要:

纤维状锌离子电池(FAZIBs)在推动智能纤维材料及智能可穿戴纺织品的发展中具有重要作用。为推动其在智能可穿戴设备中的高效应用,系统梳理了FAZIBs的基本工作原理、研究现状及未来发展趋势。首先,阐述了FAZIBs的储锌机制,并对FAZIBs的材料选择进行了深入讨论,包括锰基、钒基、普鲁士蓝类似物及有机材料,同时分析了这些材料对电池性能的直接影响;介绍了纤维电极的3种核心制备技术:原位生长技术、表面涂覆技术和湿法纺丝技术。同时,系统性地描述了FAZIBs的3种典型器件结构:平行结构、缠绕结构和同轴结构,并分析了这些结构对电池性能、稳定性和可穿戴性的影响。最后,针对FAZIBs在智能可穿戴设备中的应用挑战及未来发展方向,明确了多功能化、可扩展性和大规模生产等关键问题,并提出了未来的研究重点,包括提升能量密度、延长电池寿命以及增强器件稳定性,以促进FAZIBs在智能可穿戴纺织品领域的广泛应用。

关键词: 纤维状水系锌离子电池, 可穿戴设备, 智能纺织品, 电极材料, 器件结构

Abstract:

Significance Fiber-shaped aqueous zinc-ion batteries (FAZIBs) are crucial for the advancement of smart fiber materials and wearable devices. Their flexibility and safety make them ideal candidates for integration into textiles necessitating energy storage solutions. Zinc, being abundant and non-toxic, offers an environmentally friendly alternative to conventional lithium batteries. FAZIBs successfully address the limitations of conventional batteries, particularly with respect to flexibility and integration capabilities. As the market for wearable devices expands, there is an increasing demand for compact and flexible energy storage systems. The development of FAZIBs not only propels energy storage research forward but also unlocks new opportunities for smart textiles. Their durability in various conditions, including bending and extreme temperatures, gives them a significant advantage for practical applications. Consequently, FAZIBs demonstrate substantial potential for future use in wearable electronics and smart fabrics.
Progress The development of FAZIBs has advanced significantly in recent years, driven by innovations in materials science and fabrication techniques. A critical area of progress has been the optimization of zinc storage mechanisms within the fiber-based architecture. Various material selections, including manganese-based compounds, vanadium-based materials, Prussian blue analogs, and organic substances, have demonstrated potential in enhancing battery performance. These materials affect important performance parameters such as energy density, cycling stability, and charge/discharge rates. Additionally, the choice of electrode fabrication technique has emerged as a vital factor that has undergone substantial development. Techniques such as in-situ growth, surface coating, and wet spinning facilitate improved control over the structure and performance of fiber electrodes, thereby enhancing battery efficiency. Furthermore, advancements in device configurations, parallel, twisted, and coaxial, have contributed to increased stability, scalability, and integration into wearable devices. The progress achieved in these areas brings FAZIBs closer to commercial viability.
Conclusion and Prospect Despite the significant progress in FAZIBs development, challenges remain to be addressed for their widespread application in smart wearable textiles. Key challenges include enhancing energy density, extending battery life, and improving the stability and scalability of the devices. While current materials show promising performance, the need for higher energy density and longer-lasting batteries remains a critical focus for researchers. Furthermore, the development of large-scale production methods for FAZIBs is essential to facilitate their commercial viability. Looking to the future, the priority will be to improve the efficiency of both the materials and fabrication techniques. A focus on sustainable, high-performance materials and cost-effective manufacturing processes will be essential in driving FAZIBs toward practical use in wearable devices. As these challenges are addressed, FAZIBs will likely play an integral role in the next generation of smart textiles, contributing to the creation of fully integrated, functional, and energy-efficient wearable technology.

Key words: fiber-shaped aqueous zinc-ion battery, wearable device, smart textile, electrode material, device structure

中图分类号: 

  • TQ152

图1

FAZIBs储能机制"

图2

纤维电极制备技术"

图3

FAZIBs的研究进展"

[1] HE Jiqing, LU Chenhao, JIANG Haibo, et al. Scalable production of high-performing woven lithium-ion fiber batteries[J]. Nature, 2021, 597(7874): 57-63.
[2] JIA Hao, WANG Ziqi, TAWIAH Benjammin, et al. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.104523.
[3] WANG Ziqi, HUANG Weiyuan, JIA Chuanhua, et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries[J]. Small Methods, 2020. DOI: 10.1002/smtd.202000082.
[4] YUN Junyeong, KIM Daeil, LEE Geumbee, et al. All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes.[J]. Carbon, 2014, 79: 156-164.
[5] DUAN Jiangjiang, XIE Wenke, YANG Peihua, et al. Tough hydrogel diodes with tunable interfacial adhesion for safe and durable wearable batteries[J]. Nano Energy, 2018, 48: 569-574.
[6] ZHU Bin, JIN Yan, HU Xiaozhen, et al. Poly (dimethyl-siloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201603755.
[7] ZENG Yinxiang, ZHANG Xiyue, MENG Yue, et al. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201700274.
[8] LI Hongfei, MA Longtao, HAN Cuiping, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587.
doi: 10.1016/j.nanoen.2019.05.059
[9] KWON Yohan, WOO Sang Wook, JUNG Hye Ran, et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes.[J]. Advanced Materials, 2012. DOI: 10.1002/adma.201202196.
[10] REN Jing, ZHANG Ye, BAI Wenyu, et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance[J]. Angewandte Chemie International Edition, 2014, 126:7998-8003.
[11] FANG Xin, WENG Wei, REN Jing, et al. A cable-shaped lithium sulfur battery: advanced materials[J]. Advanced Materials, 2016, 28(3): 491-496.
doi: 10.1002/adma.201504241
[12] ZHOU Jingwen, LI Xuelian, YANG Chao, et al. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201804439.
[13] SONG Chenhui, LI Yongpeng, LI Hui, et al. A novel flexible fiber-shaped dual-ion battery with high energy density based on omnidirectional porous Al wire anode[J]. Nano Energy, 2019, 60: 285-293.
doi: 10.1016/j.nanoen.2019.03.062
[14] YANG Jiao, WANG Zhe, WANG Zhixun, et al. All-metal phosphide electrodes for high-performance quasi-solid-state fiber-shaped aqueous rechargeable Ni-Fe batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12801-12808.
[15] LIU Fan, LI Lei, XU Shuhong, et al. Cobalt-doped MoS2·nH2O nanosheets induced heterogeneous phases as high-rate capability and long-term cyclability cathodes for wearable zinc-ion batteries[J]. Energy Storage Materials, 2023.DOI: 10.1016/j.ensm.2022.11.034.
[16] CHEN Xuyong, WANG Liubin, LI Hang, et al. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2019, 38: 20-25.
doi: 10.1016/j.jechem.2018.12.023
[17] VOLKOV A I, SHARLAEV A S, BEREZINA O YA, et al. Electrospun V2O5 nanofibers as high-capacity cathode materials for zinc-ion batteries[J]. Materials Letters, 2022.DOI: 10.1016/j.matlet.2021.131212.
[18] TIAN Yuan, AN Yongling, WEI Chuanliang, et al. Recent advances and perspectives of Zn-metal free ″rocking-chair″-type Zn-ion batteries[J]. Advanced Energy Materials, 2021.DOI: 10.1002/aenm.202002529.
[19] YADAV Priya, KUMARI Nisha, RAI Alokkumar. A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries[J]. Journal of Power Sources, 2023.DOI: 10.1016/j.jpowsour.2022.232385.
[20] JIA Xiaoxiao, LIU Chaofeng, NEALE Zachary G, et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15): 7795-7866.
doi: 10.1021/acs.chemrev.9b00628 pmid: 32786670
[21] PAOLELLA Andrea, FAURE Cyril, TIMOSHEVSKII Vladimir, et al. A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives[J]. Journal of Materials Chemistry A, 2017, 5(36): 18919-18932.
[22] NAM Kwanwoo W, KIM Heejin, BELDJOUDI Yassine, et al. Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries[J]. Journal of the American Chemical Society, 2020, 142(5): 2541-2548.
doi: 10.1021/jacs.9b12436 pmid: 31895548
[23] ZHANG Ning, CHENG Fangyi, LIU Junxiang, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communication, 2017, 8(1): 1-9.
[24] XU Chengjun, LI Baohua, DU Hongda, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935.
[25] PAN Huilin, SHAO Yuyan, YAN Pengfei, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016, 1(5):1-7.
[26] GAO Tingting, YAN Guangyuan, YANG Xin, et al. Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage[J]. Journal of Energy Chemistry, 2022, 71: 192-200.
doi: 10.1016/j.jechem.2022.02.040
[27] XU Ziming, WANG Jiwei, ZHANG Wenyuan, et al. Hydrogen-bond chemistry inhibits Jahn-Teller distortion caused by Mn 3d orbitals for long-lifespan aqueous Zn//MnO2 batteries[J]. Journal of Materials Chemistry A, 2024, 12(37): 25491-25503.
[28] WANG L, ZHENG J. Recent advances in cathode materials of rechargeable aqueous zinc-ion batte-ries[J]. Materials Today Advances, 2020.DOI: 10.1016/j.mtadv.2020.100078.
[29] TANG Han, PENG Zhou, WU Lu, et al. Vanadium-based cathode materials for rechargeable multivalent batteries: challenges and opportunities[J]. Electrochemical Energy Reviews, 2018, 1(2): 169-199.
[30] WAN Fang, NIU Zhiqiang. Design strategies for vanadium-based aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58(46): 16508-16517.
[31] ZHANG Ning, DONG Yang, JIA Ming, et al. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life[J]. ACS Energy Letters, 2018, 3(6): 1366-1372.
[32] GUO Jiabin, HE Bin, GONG Wwenbin, et al. Emerging amorphous to crystalline conversion chemistry in Ca-doped VO2 cathodes for high-capacity and long-term wearable aqueous zinc-ion batteries[J]. Advanced Materials, 2024.DOI: 10.1002/adma.202303906.
[33] LIU Zhen, PULLETIKURTHI Giridhar, ENDRES Frank. A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte[J]. ACS Applied Materials & Interface, 2016, 8(19): 12158-12164.
[34] MA Haolun, CHEN Ruiyong, LIU Binbin, et al. Synthesis of ultrasmall vanadium ferricyanide nanocrystallines with the aidance of graphene self-assembled fibers towards reinforced zinc storage performance[J]. Chemical Engineering Journal, 2024.DOI: 10.1016/j.cej.2024.151112.
[35] WANG Liubin, LIU Ningbo, LI Qiaqia, et al. Dual redox reactions of silver hexacyanoferrate Prussian blue analogue enable superior electrochemical performance for zinc-ion storage[J]. Angewandte Chemie International Edition, 2024.DOI: 10.1002/ange.202416392.
[36] ZHANG Haozhe, XIONG Ting, ZHOU Tianzhu, et al. Advanced fiber-shaped aqueous zn ion battery integrated with strain sensor[J]. ACS Applied Materials & Interface, 2022, 14(36): 41045-41052.
[37] LI Hongfei, LIU Zhuoxin, LIANG Guojin, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electr-olyte[J]. ACS Nano, 2018, 12(4): 3140-3148.
doi: 10.1021/acsnano.7b09003 pmid: 29589438
[38] PAN Zhenghui, YANG Jie, YANG Jin, et al. Stitching of Zn3(OH)2V2O7·2H2O 2D nanosheets by 1D carbon nanotubes boosts ultrahigh rate for wearable quasi-solid-state zinc-ion batteries[J]. ACS Nano, 2020, 14(1): 842-853.
doi: 10.1021/acsnano.9b07956 pmid: 31869204
[39] YANG Jiao, CHEN Jingwei, WANG Zhe, et al. Recent advances and prospects of fiber-shaped rechargeable aqueous alkaline batteries[J]. Advanced Energy and Sustainability Research, 2021.DOI: 10.1002/aesr.202100060.
[40] WU Guan, SUN Suya, ZHU Xiaolin, et al. Microfluidic fabrication of hierarchical-ordered ZIF-L(Zn)@Ti3C2T core-sheath fibers for high-performance asymmetric supercapacitors[J]. Angewandte Chemie International Edition, 2022.DOI: 10.1002/ange.202115559.
[41] QIU Hui, WU Xingjiang, HONG Ri, et al. Microfluidic-oriented synthesis of graphene oxide nanosheets toward high energy density super-capacitors[J]. Energy & Fuels, 2020, 34(9): 11519-11526.
[42] WU Guan, MA Ziyang, WU Xingjiang, et al. Interfacial polymetallic oxides and hierarchical porous core-shell fibres for high energy-density electrochemical supercapacitors[J]. Angewandte Chemie International Edition, 2022.DOI: 10.1002/anie.202203765.
[43] YANG Lijun, PAN Liang, XIANG Hengxue, et al. Organic-inorganic hybrid conductive network to enhance the electrical conductivity of graphene-hybridized polymeric fibers[J]. Chemistry of Materials, 2022, 34(5): 2049-2058.
[44] WANG Xiaochun, CHEN Guangxue, CAI Ling, et al. Weavable transparent conductive fibers with harsh environment tolerance[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8952-8959.
[45] EOM Wonsik, SHIN Hwansoo, AMBADE RohanB, et al. Large-scale wet-spinning of highly electroconductive MXene fibers[J]. Nature Communications, 2020.DOI: 10.1038/s41467-020-16671-1.
[46] FANG Bo, YAN Jianmin, CHANG Dan, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors[J]. Nature Communications, 2022.DOI: 10.1038/s41467-022-29773-9.
[47] YU Xiao, FU Yongping, CAI Xin, et al. Flexible fiber-type zinc-carbon battery based on carbon fiber electr-odes[J]. Nano Energy, 2013, 2(6): 1242-1248.
[48] LI Qiulong, ZHANG Qichong, ZHOU Zhengyu, et al. Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries[J]. Nano Research, 2020, 14(1): 91-99.
[49] ZHANG Qichong, LI Chaowei, LI Qiulong, et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery[J]. Nano Letters, 2019, 19(6): 4035-4042.
doi: 10.1021/acs.nanolett.9b01403 pmid: 31082244
[50] LI Chaowei, WANG Wenhui, LUO Jie, et al. High-fluidity/high-strength dual-layer gel electrolytes enable ultra-flexible and dendrite-free fiber-shaped aqueous zinc metal battery[J]. Advanced Materials, 2024.DOI: 10.1002/adma.202313772.
[51] LIU Fan, XU Shuhong, GONG Wenbin, et al. Fluorescent fiber-shaped aqueous zinc-ion batteries for bifunctional multicolor-emission/energy-storage textiles[J]. ACS Nano, 2023, 17(18): 18494-18506.
doi: 10.1021/acsnano.3c06245 pmid: 37698337
[52] DING Bin, TANG Jinhao, WANG Zingqian, et al. A high-capacity yarn-shaped Zn-MnO2 battery for wearable electronics[J]. Physicochemical and Engineering Aspects, 2025.DOI: 10.1016/j.colsurfa.2025.136357.
[53] CHENG Jiazhe, JIANG Shouxiang, JIA Hao. Fiber-shaped aqueous zinc ion batteries for wearable energy solutions[J]. Sustainable Energy & Fuels, 2024(18): 4164-4167.
[54] WANG Guoyuan, LI Guoxin, TANG Yudong, et al. Flexible and antifreezing fiber-shaped solid-state zinc-ion batteries with an integrated bonding structure[J]. The Journal of Physical Chemistry Letters, 2023(14): 3512-3520.
[1] 刘烨, 王俊胜, 金星. 消防员个人防护装备用智能纺织品研究进展[J]. 纺织学报, 2025, 46(05): 105-115.
[2] 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134.
[3] 陈枭, 赵继忠, 董凯. 基于接触起电效应的新型机电转化纤维性能提升策略[J]. 纺织学报, 2025, 46(05): 41-48.
[4] 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51.
[5] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[6] 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233.
[7] 周奉凯, 李沂蒙, 彭佳敏, 毛吉富, 王璐. 用于增强海水淡化性能的聚吡咯功能化废旧织物[J]. 纺织学报, 2024, 45(11): 153-161.
[8] 杨辰晖, 陈檬迪, 关艳, 肖红. 基于光栅动画图案合成光纤织物的设计及其实现[J]. 纺织学报, 2024, 45(07): 40-46.
[9] 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238.
[10] 董凯, 吕天梅, 盛非凡, 彭晓. 面向个性化健康医疗的智能纺织品研究进展[J]. 纺织学报, 2024, 45(01): 240-249.
[11] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
[12] 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95.
[13] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[14] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[15] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!