纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 70-76.doi: 10.13475/j.fzxb.20241204502

• 特约专栏: 智能纤维与织物器件 • 上一篇    下一篇

生理电信号监测用导电纤维及其研究进展

张泽祺1,2, 周涛1,2, 周文琪1,2, 范中尧1,2, 杨佳蕾1,2, 陈国印1,2(), 潘绍武1,2, 朱美芳1,2   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 先进纤维材料全国重点实验室, 上海 201620
  • 收稿日期:2024-12-19 修回日期:2025-02-09 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 陈国印(1994—),男,副研究员,博士。主要研究方向为光/电功能纤维。E-mail: chengy@dhu.edu.cn
  • 作者简介:张泽祺(2000—),男,博士生。主要研究方向为智能纤维材料及柔性器件。
  • 基金资助:
    国家重点研发计划项目(2021YFA1201302);国家重点研发计划项目(2021YFA1201300)

Research progress in conductive fibers for electrophysiological signal monitoring

ZHANG Zeqi1,2, ZHOU Tao1,2, ZHOU Wenqi1,2, FAN Zhongyao1,2, YANG Jialei1,2, CHEN Guoyin1,2(), PAN Shaowu1,2, ZHU Meifang1,2   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
  • Received:2024-12-19 Revised:2025-02-09 Published:2025-05-15 Online:2025-06-18

摘要:

导电纤维具有轻量化、高比表面积、结构可设计性及导电性优异等优点,可用于生理电信号的监测,从而在生物医用领域获得了广泛关注。为此,基于材料科学和制备技术的发展革新,概述了无机导电纤维、有机导电纤维和有机/无机杂化导电纤维在成形方法及理化性质方面的研究进展,总结了体表穿戴、体内服役等场景下导电纤维对心电、脑电、肌电等生理电信号的监测能力及其适用性。并展望了该领域所面临的挑战以及未来发展方向,为高精度信号采集用导电纤维的结构、功能设计及其在医疗领域应用等方面提供一定的参考。

关键词: 导电纤维, 生理电信号监测, 结构设计, 生物医用, 功能纤维

Abstract:

Significance Physiological electrical signals reflect electrical activities generated by cells or tissues within the body indicating the functional status of organs and tissues. The accurate recording and analysis of these signals play a crucial role in the diagnosis, monitoring, and treatment of various diseases. Advancements in medical diagnosis and treatment, particularly in the fields of brain neurology, sports science, and cardiac health, have propelled physiological signal monitoring to the forefront of current research. Furthermore, developments in materials science and fabrication techniques have significantly enhanced electrode materials used for signal acquisition. In order to achieve high signal-to-noise ratios and superior spatiotemporal resolution, it is crucial to optimize the structural and functional properties of neural electrodes. Conductive fibers possess several advantages, including light weight, high specific surface area, structural designability, and excellent conductivity. These properties make them ideal for monitoring physiological electrical signals, thereby garnering significant attention in the field of biomedical applications.
Progress This review is based on the advancements in materials science and preparation technologies. It summarizes the research progress of inorganic conductive fibers, organic conductive fibers, and organic/inorganic hybrid conductive fibers in terms of formation methods and physicochemical properties. Compared with conventional metal-based or silicon-based physiological electrodes, conductive fibers exhibit superior performance by providing clearer and more stable electrophysiological signals, attributed to their high sensitivity, light weight, and high degree of customization. Therefore, in the design of conductive fibers, current research trends are progressively shifting towards multi-component and multi-structure systems. For instance, by integrating the functional and structural advantages of organic materials (such as polymers) with those of inorganic materials (such as metals, metal oxides, graphene, etc.), these advanced designs aim to better address the requirements of practical applications.
Furthermore, this review comprehensively evaluates the monitoring capabilities and applicability of conductive fibers in various scenarios for physiological signals, including electrocardiograms, electroencephalograms, and electromyograms, both invasive and non-invasive monitoring and recording. Non-invasive electrodes adhere to the skin surface to continuously detect and record physiological signals over extended periods. In contrast, invasive electrodes require implantation within the body to directly contact nerve tissues or individual neurons, enabling more precise monitoring and recording of electrophysiological activities in specific tissues or organs. However, this also imposes more stringent requirements on the biocompatibility of conductive fibers. Through flexible structural design and multi-functional integration, conductive fibers can be optimized as an ideal choice for physiological monitoring applications.
Conclusion and Prospect This review provide an outlook on the current challenges and future development directions of conductive fibers, offering valuable insights into the structural and functional design of conductive fibers for high-precision signal acquisition and their medical applications. With advancements in materials science and nanotechnology, conductive fibers for physiological signal monitoring are poised to drive the development of wearable technologies and implantable medical devices. Furthermore, conductive fibers are expected to play an increasingly critical role in telemedicine, personalized health management, and neuroscience research.

Key words: conductive fiber, electrophysiological signal monitoring, structural design, medical application, functional fiber

中图分类号: 

  • TQ329

图1

导电纤维分类"

图2

导电纤维对不同生理电信号监测"

[1] CHENG L, LI J, GUO A Y, et al. Recent advances in flexible noninvasive electrodes for surface electromyography acquisition[J]. Flexible Electronics, 2023. DOI: 10.1038/s41528-023-00273-0.
[2] SHI J D, FANG Y. Flexible and implantable microelectrodes for chronically stable neural inter-faces[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201804895.
[3] WON C H, JEONG U J, LEE S H, et al. Mechanically tissue-like and highly conductive au nanoparticles embedded elastomeric fiber electrodes of brain-machine interfaces for chronic in vivo brain neural record-ing[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202205145.
[4] LIN S, JIANG J J, HUANG K, et al. Advanced electrode technologies for noninvasive brain-computer interfaces[J]. ACS Nano, 2023, 17(24): 24487-24513.
doi: 10.1021/acsnano.3c06781 pmid: 38064282
[5] GAO Q, AGARWAL S, GREINER A, et al. Electrospun fiber-based flexible electronics: fiber fabrication, device platform, functionality integration and applications[J]. Progress in Materials Science, 2023. DOI: 10.1016/j.pmatsci.2023.101139.
[6] ZHU M J, WANG H M, LI S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording[J]. Advanced Healthcare Materials, 2021. DOI: 10.1002/adhm.202100646.
[7] JONATHAN R, WANG H L, FENNO L, et al. Next-generation probes, particles, and proteins for neural interfacing[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1601649.
[8] KIM Y T, MARIOI R O. Material considerations for peripheral nerve interfacing[J]. MRS Bulletin, 2012, 37(6): 573-580.
[9] CHEN X M, FENG Y H, ZHANG P, et al. Hydrogel fiber-based biointerfacing[J]. Advanced Materials, 2024. DOI:10.1002/adma.202413476.
[10] CAO P L, WANG Y, YANG J, et al. Scalable layered heterogeneous hydrogel fibers with strain-induced crystallization for tough, resilient, and highly conductive soft bioelectronics[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202409632.
[11] WEI L Q, WANG S S, SHAN M Q, et al. Conductive fibers for biomedical applications[J]. Bioactive Materials, 2023, 22: 343-364.
doi: 10.1016/j.bioactmat.2022.10.014 pmid: 36311045
[12] WU P Q, GU J F, LIU X, et al. A robust core-shell nanofabric with personal protection, health monitoring and physical comfort for smart sportswear[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202411131.
[13] WU H, CHAI S S, ZHU L F, et al. Wearable fiber-based visual strain sensors with high sensitivity and excellent cyclic stability for health monitoring and thermal management[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.110300.
[14] ZHU Z G, SONG W H, BURUGAPALLI K, et al. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor[J]. Nanotechnology, 2010. DOI: 10.1088/0957-4484/21/16/165501.
[15] DUYGU K, TAKANO H, SHIM E, et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging[J]. Nature Communications, 2014. DOI: 10.1038/ncomms6259.
[16] OH J M, VENTERS C C, CHAO D, et al. U1 snRNP regulates cancer cell migration and invasion in vitro[J]. Nature Communications, 2020. DOI: 10.1038/s41467-019-13993-7.
[17] WANG K, FREWIN C L, ESRAFILZADEH D, et al. High-performance graphene-fiber-based neural recording microelectrodes[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201805867.
[18] FLAVIA V, SUMMERSON S, AAZHANG B, et al. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes[J]. ACS Nano, 2015, 9(4): 4465-4474.
doi: 10.1021/acsnano.5b01060 pmid: 25803728
[19] LU L L, FU X F, LIEW Y J, et al. Soft and mRI compatible neural electrodes from carbon nanotube fibers[J]. Nano Letters, 2019, 19(3): 1577-1586.
doi: 10.1021/acs.nanolett.8b04456 pmid: 30798604
[20] QIAN G, YU Y Y, KANG L X, et al. Modulus-tailorable, stretchable, and biocompatible carbonene fiber for adaptive neural electrode[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202107360.
[21] LU B Y, YUK H, LIN S T, et al. Pure PEDOT:PSS hydrogels[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-09003-5.
[22] XU T C, JI W L, WANG X F, et al. Support-free PEDOT:PSS fibers as multifunctional microelectrodes for in vivo neural recording and modulation[J]. Angewandte Chemie International Edition, 2022. DOI: 10.1002/anie.202115074.
[23] XU T C. Well-modulated interfacial ion transport enables D-sorbitol/PEDOT:PSS fibers to sense brain electrophysiological signals in vivo[J]. Chemical Communications, 2024, 60(63): 8244-8247.
[24] ZHAO W Q, SHAO F, SUN F Q, et al. Neuron-inspired sticky artificial spider silk for signal transmission[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202300876.
[25] BAO Q L, ZHANG H, YANG J X, et al. Graphene-polymer nanofiber membrane for ultrafast photonics[J]. Advanced Functional Materials, 2010, 20(5): 782-791.
[26] LÜ T, YAO Y, LI N, et al. Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes[J]. Nano Today, 2016, 11(5): 644-660.
[27] MANTHIRIYAPPAN S, HYO Y N, AHN K H, et al. Conductive nanocomposites based on polystyrene microspheres and silver nanowires by latex blending[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 756-764.
[28] LU C, PARK S J, RICHNER T, et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1600955.
[29] WON C H, JEONG U J, LEE S H, et al. Mechanically tissue-like and highly conductive AU nanoparticles embedded elastomeric fiber electrodes of brain-machine interfaces for chronic in vivo brain neural recording[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202205145.
[30] TANG C Q, XIE S L, WANG M Y, et al. A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic-brain inter-faces[J]. Journal of Materials Chemistry B, 2020, 8(20): 4387-4394.
[31] HUANG S Z, LIU X Y, LIN S T, et al. Control of polymers' amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics[J]. Nature Communications, 2024. DOI: 10.1038/s41467-024-47988-w.
[32] DAWIT H, ZHAO Y W, WANG J, et al. Advances in conductive hydrogels for neural recording and stimul-ation[J]. Biomaterials Science, 2024, 12(11): 2786-2800.
[33] GAO K P, YANG H J, WANG X L, et al. Soft pin-shaped dry electrode with bristles for EEG signal measurements[J]. Sensors and Actuators A: Physical, 2018, 283: 348-361.
[34] CHANG B Y, LUO J B, LIU J, et al. A high-performance composite fiber with an organohydrogel sheath for electrocardiogram monitoring[J]. Journal of Materials Chemistry C, 2024, 12(32): 12413-12421.
[35] CHANG B Y, LUO J B, XIA J, et al. Conductive elastic composite electrode and its application in electrocardiogram monitoring clothing[J]. ACS Applied Electronic Materials, 2023, 5(4): 2026-2036.
[36] DRISCOLL N, ANTONINI M J, CANNON T M, et al. Multifunctional neural probes enable bidirectional electrical, optical, and chemical recording and stimulation in vivo[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202408154.
[37] CHEN J W, FANG Y, FENG J Y, et al. Fast-response fiber organic electrochemical transistor with vertical channel design for electrophysiological monitoring[J]. Journal of Materterials Chemistry B, 2024, 12(37): 9206-9212.
[38] HU S F, SONG J Y, TIAN Q, et al. Mechanically and conductively robust eutectogel fiber produced by continuous wet spinning enables epidermal and implantable electrophysiological monitoring[J]. Advanced Fiber Materials, 2024, 6(6): 1980-1991.
[39] WANG L C, XI Y, XU Q D, et al. Multifunctional IrOx neural probe for in situ dynamic brain hypoxia evalu-ation[J]. ACS Nano, 2023, 17(22): 22277-22286.
[40] TANG C Q, HAN Z Q, LIU Z W, et al. A soft-fiber bioelectronic device with axon-like architecture enables reliable neural recording in vivo under vigorous activi-ties[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202407874.
[1] 朱梦慧, 葛美彤, 董智佳, 丛洪莲, 马丕波. 纬编双面羊毛/涤纶交织物的结构与热湿性能评价[J]. 纺织学报, 2025, 46(05): 179-185.
[2] 李润, 常梓洋, 张如范. 碳纳米管功能纤维的可控制备与性能调控研究进展[J]. 纺织学报, 2025, 46(05): 30-40.
[3] 陈枭, 赵继忠, 董凯. 基于接触起电效应的新型机电转化纤维性能提升策略[J]. 纺织学报, 2025, 46(05): 41-48.
[4] 符芬, 王钰涵, 丁凯, 赵帆, 李超靖, 王璐, 曾泳春, 王富军. 纤维素基止血材料的研究进展[J]. 纺织学报, 2025, 46(04): 226-234.
[5] 郭洁琰, 徐颖雯, 丁放, 任学宏. 卤胺抗菌剂及其改性纤维的应用研究进展[J]. 纺织学报, 2025, 46(04): 255-263.
[6] 王菁, 董智佳, 郑飞, 黄守东, 彭会涛, 吴光军, 马丕波. 横编全成形鞋体的结构设计与工艺实现[J]. 纺织学报, 2025, 46(04): 89-95.
[7] 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48.
[8] 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19.
[9] 刘微, 田振川, 沈朝阳, 梅润. 金属-有机框架应用于纤维/织物功能化改性的研究进展[J]. 纺织学报, 2024, 45(12): 215-224.
[10] 欧宗权, 于金超, 潘志娟. 光致变色聚乳酸/聚3-羟基丁酸酯共混纤维的纺制及其结构与性能[J]. 纺织学报, 2024, 45(12): 9-17.
[11] 郭琦, 吴宁, 孟影, 安达, 黄建龙, 陈利. 变厚度头锥体织物的工艺设计与验证[J]. 纺织学报, 2024, 45(12): 98-108.
[12] 姚思宏, 董智佳, 蒋高明, 王二南. 零裁耗经编成形翻领T恤结构设计与建模[J]. 纺织学报, 2024, 45(11): 178-184.
[13] 陈钰珊, 蒋高明, 李炳贤. 基于双扎口的纬编管状无缝织物三维仿真[J]. 纺织学报, 2024, 45(10): 95-102.
[14] 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106.
[15] 王遵钦, 刘东炎, 王晓旭, 张典堂. 机织角联锁变密度复合材料的面外压缩力学特性[J]. 纺织学报, 2024, 45(07): 63-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!