纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 77-88.doi: 10.13475/j.fzxb.20250100402

• 特约专栏: 智能纤维与织物器件 • 上一篇    下一篇

织物锂电池电极与器件构筑研究进展

姜亚龙, 李格格, 薛璐, 程宇, 杨应奎()   

  1. 武汉纺织大学 纺织新材料与先进加工全国重点实验室, 湖北 武汉 430200
  • 收稿日期:2025-01-06 修回日期:2025-02-17 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 杨应奎(1977—),男,教授,博士。主要研究方向为聚合物及纤维基能源材料。E-mail:ykyang@wtu.edu.cn
  • 作者简介:姜亚龙(1993—),男,副教授,博士。主要研究方向为柔性聚合物储能材料与器件。
  • 基金资助:
    国家自然科学基金项目(52173091);湖北省中央引导地方科技发展专项(2024CSA076);湖北省先进纤维材料综合型技术创新平台项目(XC202421);湖北省创新群体项目(2021CFA022)

Research progress of electrode and device fabrication of textile lithium batteries

JIANG Yalong, LI Gege, XUE Lu, CHENG Yu, YANG Yingkui()   

  1. State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2025-01-06 Revised:2025-02-17 Published:2025-05-15 Online:2025-06-18

摘要:

可穿戴电子设备在医疗健康、运动监测和人机交互等领域具有广阔的应用前景,而长效稳定的能源供给是实现其功能的关键。织物锂电池结合了纺织品的结构多样性、可穿戴性、柔韧性和轻便性与锂电池的高能量密度和长服役寿命等优势,且能够与各类元器件高度集成,因而成为最重要的能源供给装置之一。开发由纤维、纱线和织物制成的高性能锂电池,对于推动高效电子织物的发展具有重要意义。为此,综述了织物锂电池的器件组成与反应机制;基于纺织品基材的特点,深入探讨了织物电极的制造技术、集成方法及其电化学性能;分析了织物电池在柔韧性、伸缩性和可洗性等方面所面临的挑战,并提出了解决方案,同时展望了该领域未来的研究方向和发展趋势。

关键词: 织物锂电池, 柔性储能, 锂离子电池, Li-S电池, Li-O2电池, 电子织物

Abstract:

Significance Wearable electronics have broad application prospects in the fields of medical health, sports monitoring and human-machine interaction, and long-term and stable energy supply is the key to realizing their functions. One of the key factors in achieving high-performance electronic fabrics is a reliable wearable power source. While research on flexible energy storage systems is rapidly growing, although research on flexible energy storage systems is rapidly advancing, studies specifically focused on textile lithium batteries remain limited. Textile lithium batteries combine the structural diversity, wearability, mechanical flexibility, and lightness of textiles with the high energy density and long service life of lithium batteries, and can be highly integrated with various components, becoming one of the most important energy supply devices. The development of high-performance textile lithium batteries made of fibers, yarns and fabrics is of great significance to promote the development of efficient electronic textiles.
Progress Textile lithium batteries have attracted extensive attention as a key direction in the development of flexible energy storage devices. Current research primarily focuses on device architecture, electrochemical mechanisms, material fabrication strategies, and system integration technologies. Based on battery types, textile lithium batteries can be categorized into textile lithium-ion batteries, lithium-air batteries, and lithium-sulfur batteries. Each type exhibits distinct construction approaches and reaction mechanisms when integrated with textile substrates, making them prominent research hotspots. In terms of electrode fabrication, various strategies have been developed to accommodate the flexibility, porosity, and weaveability of textile substrates. These strategies mainly include material coating, material printing, in-situ material growth, and spinning-based fabrication. Regarding device assembly, textile lithium batteries are generally classified into one-dimensional (1-D) fiber-type and two-dimensional (2-D) fabric-type configurations. Although fiber-type batteries are readily incorporated into woven structures, they often suffer from large diameters, complex layered architectures, and high mechanical modulus, making it difficult to simultaneously achieve softness and compactness. To address this, two representative strategies have been proposed to transition from 1-D fiber-type to 2-D textile-type batteries: (1) sewing fiber-type batteries into existing fabrics; and (2) weaving fiber batteries into loose fabric structures. To achieve continuous power supply, recent efforts have extended toward integrating textile batteries with energy harvesting devices, such as triboelectric nanogenerator (TENG) fabrics and flexible solar cells, thereby enabling the construction of self-powered textile systems. Moreover, challenges related to flexibility, stretchability, and washability remain critical issues for textile batteries. Current research has proposed several solutions, including interfacial engineering, structural optimization, and multifunctional coatings, to address these limitations and enhance practical applicability.
Conclusion and Prospect This review provides a comprehensive overview of the latest research advancements in textile lithium batteries based on textile substrates and outlines the following prospects. Future efforts are anticipated to focus on the controlled growth of active materials and the optimization of electron/ion transport to further enhance the electrochemical performance of textile batteries. Besides, the development of flexible, stretchable, and washable textile electrodes, mechanically robust solid-state electrolytes, and advanced encapsulation strategies, along with the integration of textile fabrication technologies, will be essential for realizing practical and scalable textile energy storage systems. These strategies will contribute to improving the long-term reliability and practical performance of textile lithium batteries.

Key words: textile lithium battery, flexible energy storage, lithium-ion battery, Li-S battery, Li-O2 battery, electronic fabric

中图分类号: 

  • TS104.7

图1

织物锂电池为可穿戴设备供电并监测生理参数"

图2

锂离子电池组成与反应机制示意图"

图3

一维纤维型锂离子电池"

图4

一维纤维型Li-S电池"

图5

一维纤维型Li-O2电池"

图6

二维织物型锂离子电池"

图7

从一维纤维型电池到二维织物型电池"

图8

织物电池与摩擦纳米发电机集成"

图9

织物电池与太阳能电池集成"

[1] WANG Z, SHI X, PENG H S. Alternating current electroluminescent fibers for textile displays[J]. National Science Review, 2023. DOI: 10.1093/nsr/nwac193.
[2] TAN P, WANG H F, XIAO F R, et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics[J]. Nature Communications, 2022. DOI: 10.1038/s41467-022-28027-y.
[3] ZHOU Z H, CHEN K, LI X S, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays[J]. Nature Electronics, 2020, 3(9): 571-578.
[4] MO F N, LIANG G J, HUANGZ D, et al. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical diffi-culties[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902151.
[5] ZHANG T Y, WU J J, WANG Y C, et al. Perspective in textile energy storage integrated textile elements: textile materials, structure, and manufactured methods[J]. Advanced Energy Materials, 2024. DOI:10.1002/aenm.202470039.
[6] ZHAI S L, KARAHAN H E, WEI L, et al. Textile energy storage: structural design concepts, material selection and future perspectives[J]. Energy Storage Materials, 2016, 3: 123-139.
[7] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935.
doi: 10.1126/science.1212741 pmid: 22096188
[8] MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020. DOI: 10.1038/s41467-020-15355-0.
[9] JI L W, LIN Z, ALCOUTLABI M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2682-2699.
[10] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
[11] AFROJ S, TAN S R, ABDELKADER A M, et al. Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202000293.
[12] HU L B, MANTIA F L, WU H, et al. Lithium-ion textile batteries with large areal mass loading[J]. Advanced Energy Materials, 2011, 1(6): 1012-1017.
[13] HONG H, HU J Y, YAN X. UV curable conductive ink for the fabrication of textile-based conductive circuits and wearable UHF RFID tags[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27318-27326.
[14] SHAHARIAR H, KIM I, BHAKTA R, et al. Direct-write printing process of conductive paste on fiber bulks for wearable textile heaters[J]. Smart Materials and Structures, 2020. DOI: 10.1088/1361-665X/ab8c25.
[15] CIE C. Ink jet textile printing[D]. Amsterdam: Elsevier, 2015: 111-123.
[16] KIM I, JU B, ZHOU Y, et al. Microstructures in all-inkjet-printed textile capacitors with bilayer interfaces of polymer dielectrics and metal-organic decomposition silver electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 24081-24094.
[17] STEMPIEN Z, RYBICKI T, RYBICKI E, et al. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique[J]. Synthetic Metals, 2015, 202: 49-62.
[18] HUANG Y, IP W S, LAU Y Y, et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability[J]. ACS Nano, 2017, 11(9): 8953-8961.
doi: 10.1021/acsnano.7b03322 pmid: 28813141
[19] PALCHOUDHURY S, RAMASAMY K, GUPTA R K, et al. Flexible supercapacitors: a materials perspec-tive[J]. Forntiers in Materials, 2019. DOI: 10.3389/fmats.2018.00083.
[20] LI Z, HUANG T Q, GAO W W, et al. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors[J]. ACS Nano, 2017, 11(11): 11056-11065.
doi: 10.1021/acsnano.7b05092 pmid: 29035519
[21] ZHANG D. Advances in filament yarn spinning of textiles and polymers[M]. The Netherlands, 2014:19-23.
[22] XIA Z, LI S, WU G Q, et al. Manipulating hierarchical orientation of wet-spun hybrid fibers via rheological engineering for Zn-ion fiber batteries[J]. Advanced Materials, 2022. DOI: 10.1016/j.cej.2023.148334.
[23] ZHENG Y, MAN Z M, ZHANG Y, et al. High-performance stretchable supercapacitors based on centrifugal electrospinning-directed hetero-structured graphene-polyaniline hierarchical fabric[J]. Advanced Fiber Materials, 2023, 5(5): 1759-1772.
[24] KIM B, KONCAR V, DEVAUX E, et al. Electrical and morphological properties of PP and PET conductive polymer fibers[J]. Synthetic Metals, 2004, 146(2): 167-174.
[25] REN J, ZHANG Y, BAI W Y, et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance[J]. Angewandte Chemie International Edition, 2014, 53(30): 7864-7869.
[26] HA S H, KIM S J, KIM H J, et al. Fibrous all-in-one monolith electrodes with a biological gluing layer and a membrane shell for weavable lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(15): 6633-6641.
[27] FANG X, WENG W, REN J, et al. A cable-shaped lithium sulfur battery[J]. Advanced Materials, 2016, 28(3): 491-496.
doi: 10.1002/adma.201504241
[28] WANG L, PAN J, ZHANG Y, et al. A Li-air battery with ultralong cycle life in ambient air[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201704378.
[29] ZHANG Y, JIAO Y D, LU L J, et al. An ultraflexible silicon-oxygen battery fiber with high energy density[J]. Angewandte Chemie International Edition, 2017, 56(44): 13741-13746.
[30] DE B, YADAV A, KHAN S, et al. A facile methodology for the development of a printable and flexible all-solid-state rechargeable battery[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 19870-19880.
[31] LIU B, WANG X F, CHEN H T, et al. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries[J]. Scientific Reports, 2013. DOI: 10.1038/srep01622.
[32] PU X, LI L X, SONG H Q, et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electro-nics[J]. Advanced Materials, 2015, 27(15): 2472-2478.
[33] LEE Y H, KIM J S, NOH J Y, et al. Wearable textile battery rechargeable by solar energy[J]. Nano Letters, 2013, 13(11): 5753-5761.
[34] CHEN Y J, XU B G, WEN J F, et al. Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes[J]. Small, 2018. DOI: 10.1002/smll.201704373.
[35] PAN Z H, YANG J, LI L H, et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor[J]. Energy Storage Materials, 2020, 25: 124-130.
[36] MUN T J, KIM S H, PARK J W, et al. Wearable energy generating and storing textile based on carbon nanotube yarns[J]. Advanced Functional Materials, 2020. DOI:10.1002/adfm.202000411.
[37] WANG Z P, CHENG J L, GUAN Q, et al. All-in-one fiber for stretchable fiber-shaped tandem super-capacitors[J]. Nano Energy, 2018, 45: 210-219.
[38] UZUN S, SEYEDIN S Y, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201905015.
[39] WANG C F, HE T, CHENG J L, et al. Bioinspired interface design of sewable, weavable, and washable fiber zinc batteries for wearable power textiles[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202004430.
[40] HUANG Q Y, WANG D R, HU H, et al. Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201910541.
[1] 李朵, 谢晓雯, 张迪凡, 吴景霞, 陆凯, 陈培宁. Wi-Fi双频织物天线的构建及其电磁性能[J]. 纺织学报, 2025, 46(05): 10-16.
[2] 佘叶美, 彭阳阳, 王法猛, 潘如如. 基于经编间隔织物的柔性压力传感器制备及其性能[J]. 纺织学报, 2025, 46(03): 158-166.
[3] 卿星, 肖晴, 陈斌, 李沐芳, 王栋. 纤维晶体管器件研究进展[J]. 纺织学报, 2024, 45(04): 33-40.
[4] 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66.
[5] 管图祥, 吴健, 暴宁钟. 微流控纺丝制备石墨烯纤维基柔性超级电容器的研究进展[J]. 纺织学报, 2023, 44(12): 205-215.
[6] 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167.
[7] 李港华, 王航, 史宝会, 曲丽君, 田明伟. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(02): 96-102.
[8] 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206.
[9] 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179.
[10] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[11] 陈洪立 焦晓宁 柯鹏. 取向增强复合锂离子电池隔膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 8-14.
[12] 周锦涛 焦晓宁 于宾. 复合锂离子电池隔膜的制备及其电化学性能[J]. 纺织学报, 2017, 38(01): 23-28.
[13] 李忠健 潘如如 高卫东. 应用纱线序列图像的电子织物构建[J]. 纺织学报, 2016, 37(3): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!