纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 158-166.doi: 10.13475/j.fzxb.20231204001

• 染整工程 • 上一篇    

基于经编间隔织物的柔性压力传感器制备及其性能

佘叶美, 彭阳阳, 王法猛, 潘如如()   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2023-12-21 修回日期:2024-09-19 出版日期:2025-03-15 发布日期:2025-04-16
  • 通讯作者: 潘如如(1982—),男,教授,博士。主要研究方向为纺织品图像分析检测技术、纺织智能制造。E-mail:prrsw@163.com
  • 作者简介:佘叶美(2000—),女,硕士生。主要研究方向为柔性电子传感织物。
  • 基金资助:
    国家自然科学基金项目(61976105);中国纺织工业联合会应用基础研究项目(J202006)

Preparation and performance of flexible pressure sensor based on warp knitted spacer fabric

SHE Yemei, PENG Yangyang, WANG Fameng, PAN Ruru()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-12-21 Revised:2024-09-19 Published:2025-03-15 Online:2025-04-16

摘要: 针对目前部分柔性传感器制作成本高、过程复杂且难以一体化集成到纺织品中,限制其进一步发展与应用等问题,通过集成经编间隔织物与导电复合材料于一体,制备了具有优异传感性能的多孔导电柔性压力传感器,对其传感性能进行研究,并探讨了其在人体运动方面潜在的应用和未来工业化生产的潜力。结果表明:基于经编间隔织物的柔性压力传感器在0~160 kPa范围内具有良好的灵敏度和线性度;在10 kPa压力下响应时间为140 ms,恢复时间为166 ms,足以实时监测人体运动信号;在大于2 000次循环按压后仍能保持稳定的电阻变化,表现出优异的耐久性。该传感器的制备方法简单,成本低,可为柔性压力传感器的产业化生产提供有效的方法和途径。

关键词: 经编间隔织物, 压力传感器, 柔性电子织物, 聚二甲基硅氧烷, 传感性能

Abstract:

Objective With the development of the times, more and more attention are paid to health issues. Wearable technology is also slowly approaching the lives of the public, and compared with conventional rigid sensors, flexible wearable technology has the advantages of better wearing comfort, human body fit and lightness. In order to deal with high manufacturing cost, complex manufacturing process and difficult integration of some flexible sensors into textiles, which limits the further development and application in flexible pressure sensors, a flexible pressure sensor with simple preparation process is studied.

Method The spacer fabric selected is composed of outer fabrics and a monofilament in the middle. Firstly, the toner, copper powder, PDMS and its curing agent and organic silicon are mixed in a ratio of 10 g∶13 g∶18 g∶2 g∶20 g, stirred on a digital display constant speed mixer for 20 min, the speed is 300 r/min, and 2 g of carbonic acid is added during the stirring process. The warp knitting spacer fabric is cut into 1×1 cm, which is put into the mixed conductive material to soak and press. After the warp knitting spacer fabric fully absorbs the conductive material, it is dried in an oven at 80 ℃ for 2 h. After drying, it was encapsulated with conductive silver cloth to prepare a resistive flexible pressure sensor based on warp knitted spacer fabric.

Results The flexible pressure sensor was identified to have a sensing range of 0-160 kPa and a sensitivity of 1.304 kPa in the low pressure range (0-20 kPa). Owing to the three-dimensional structure and microporous structure of the sensor. The sensor was also able to undergo large deformation under the action of small external forces, and the change of conductive path leads to a large change in its resistance. The response time of the flexible pressure sensor is only 140 ms, which is enough to monitor human movement signals. The resistance change remained stable for 2 000 cycles, indicating that the flexible composite piezoresistive material had good recovery and wear resistance. At the same time, the flexible sensor prepared based on textile matrix exhibited good air permeability and moisture permeability of 180 mm/s and 1 850 g/(m2·24 h), respectively.

Conclusion A flexible pressure sensor with excellent sensing performance was prepared. The 3D structure and excellent elasticity of the warp knitted spacer fabric was shown to provide excellent structural advantages for the preparation of the resistive flexible pressure sensor. The spacer fabric can not only absorb more conductive materials more firmly, but can also allow diferent compressible space and be more sensitive to external mechanical stimuli. In the preparation process, carbonic acid is added to make it porosity, so that the internal air increases, and the compressibility is improved, so the performance in the sensitivity including taking performance is improved, the response time of the flexible pressure sensor is 140 ms, and the recovery time is 166 ms. Reliable sensing stability and cycling durability (>2000 cycles) all contribute to the sensor's good electrical performance. Spacer fabrics inherently have good air and water permeability, while PDMS is malleable, biocompatible, easy to process, and relatively low in cost. It is proved that the sensor prepared can sensitively make signal changes to human motion changes, and has certain advantages compared with piezoresistive sensors of the same type and realizes a simple process and low cost.

Key words: warp knitted spacer fabric, pressure sensor, flexible electronic fabric, polydimethylsiloxane, sensing performance

中图分类号: 

  • TM242

图1

柔性压力传感器制备流程图及间隔织物结构示意图"

图2

导电织物的截面微观形貌照片(×100)"

图3

传感器结构示意图及柔韧性"

图4

柔性压力传感器的灵敏度"

图5

柔性压力传感器响应时间及放大图"

图6

柔性压力传感器的传感稳定性"

图7

柔性压力传感器在10 kPa压强下的循环耐久性"

图8

柔性压力传感器的迟滞性"

图9

间隔织物压缩应力-应变曲线"

图10

间隔织物与导电织物应力-应变曲线"

图11

柔性压力传感器的耐水洗性"

图12

柔性压力传感器的柔软性"

图13

柔性压力传感器弯曲角度与其电阻变化关系图"

图14

柔性压力传感器在人体弯曲运动方面应用"

表1

压阻式柔性压力传感器性能对比"

传感组件 检测范
围/kPa
灵敏
度/kPa- 1
参考
文献
超疏水PDMS海绵状 0~120 0.013 2 [11]
基于CNTs多层结构 0~30 0.164 0 [14]
多孔CNT/PDMS 0~50 0.015 0 [15]
PDMS/碳纳米胶囊 0~450 0.008 2 [16]
多孔PDMS/CNTs复合 0~30 0.173 0 [17]
棉织物/PVA/CNTs复合 0~200 0.002 5 [18]
本文间隔织物PDMS复合 0~160 0.130 4
[1] 门海蛟, 宋健尧, 黄秉经, 等. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21):41-63.
MEN Haijiao, SONG Jianyao, HUANG Bingjing, et al. Research progress of flexible wearable electronic strain sensors[J]. Materials Reports, 2023, 37(21):41-63.
[2] MA L, SHUAI X, HU Y, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer[J]. Journal of Materials Chemistry C, 2018, 6(48): 13232-13240.
[3] LI W, JIN X, HAN X, et al. Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19211-19220.
[4] KIM J, BYUN S, LEE S, et al. Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester[J]. Nano Energy, 2020, 75: 104992.
[5] ZOU J, ZHANG M, HUANG J, et al. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor[J]. Advanced Energy Materials, 2018. DOI:10.1002/aenm.201702671.
[6] ZAZOUM B, BATOO K M, KHAN M A A. Recent advances in flexible sensors and their applications[J]. Sensors, 2022. DOI: 10.3390/s22124653.
[7] CHEN T, WU G, PANAHI-SARMAD M, et al. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions[J]. Composites Science and Technology, 2022. DOI:10.1016/j.compscitech.2022.109563.
[8] CHENG H, ZHANG N, YIN Y, et al. A high-performance flexible piezoresistive pressure sensor features an integrated design of conductive fabric electrode and polyurethane sponge[J]. Macromolecular Materials and Engineering, 2021. DOI:10.1002/mame.202100263.
[9] 李港华, 王航, 史宝会, 等. 柔性压力传感器的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(2):96-102.
LI Ganghua, WANG Hang, SHI Baohui, et al. Construction of flexible electronic fabrics and their pressure sensing performance[J]. Journal of Textile Research, 2023, 44(2):96-102.
[10] 王迎豪, 杨昆. 经编间隔织物压缩性能研究[J]. 针织工业, 2022(12):10-14.
WANG Yinghao, YANG Kun. Compressive properties of warp knitted spacer fabric[J]. Knitting Industries, 2022(12):10-14.
[11] CHEN B, LI H, ZHANG S, et al. High-performance and superhydrophobic piezoresistive pressure sensor based on mountain ridge-like microstructure by silver nanoparticles and reduced graphene oxide[J]. Composites Part A: Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2022.107171
[12] 赵秀华, 徐伟, 易旺民, 等. 基于Ag/CNTs-PDMS的高灵敏度柔性压力传感器研制及性能测试[J]. 航天器环境工程, 2019, 36(3):271-277.
ZHAO Xiuhua, XU Wei, YI Wangmin, et al. Development and performance test of high sensitivity flexible pressure sensor based on Ag/CNTs-PDMS[J]. Spacecraft Environmental Engineering, 2019, 36(3):271-277.
[13] WANG F, LI H, HU P, et al. Industrially scalable textile sensing interfaces for extended artificial tactile and human motion monitoring without compromising comfort[J]. ACS Applied Materials & Interfaces, 2024, DOI:10.1021/acsami.4c00423.
[14] 陈奕汛, 吴倩, 李倩, 等. 多层结构柔性压力传感织物的设计与性能[J]. 纺织科技进展, 2024, 46(2):14-17,22.
CHEN Yixun, WU Qian, LI Qian, et al. Design and Performance of multilayer flexible pressure sensing fabric[J]. Progress in Textile Science & Technology, 2024, 46(2):14-17,22.
[15] JUNG Y, JUNG K K, KIM D H, et al. Linearly sensitive and flexible pressure sensor based on porous carbon nanotube/polydimethylsiloxane composite structure[J]. Polymers, 2020. DOI:10.3390/polym12071499.
[16] MU C, GUO X, ZHU T, et al. Flexible strain/pressure sensor with good sensitivity and broad detection range by coupling PDMS and carbon nanocapsules[J]. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.165696.
[17] 郭鑫雷, 刘鑫, 胡汉春, 等. 多孔聚二甲基硅氧烷/碳纳米管复合压阻式柔性压力传感器的制备[J]. 轻工机械, 2023, 41(2):34-41.
GUO Xinlei, LIU Xin, HU Hanchun, et al. Preparation of porous polydimethylsiloxane/carbon nanotube composite piezoresistive flexible pressure sensor[J]. Light Industry Machinery, 2023, 41(2):34-41.
[18] 曹少杰, 杨奥林, 肖学良. 棉织物/PVA/CNTs复合柔性压阻式压力传感器的制备与性能研究[J]. 传感技术学报, 2021, 34(6):728-732.
CAO Shaojie, YANG Aolin, XIAO Xueliang. Preparation and properties study of cotton fabric /PVA/CNTS composite flexible piezoresistive pressure sensor[J]. Chinese Journal of Sensors and Actuators, 2021, 34(6):728-732.
[1] 范梦晶, 岳欣琰, 邵剑波, 陈雨, 洪剑寒, 韩潇. 基于静电纺纤维包芯纱的电容式扭转传感器构建及其传感性能[J]. 纺织学报, 2025, 46(02): 106-112.
[2] 张蕊, 叶苏娴, 王建, 邹专勇. 全织物型离电式柔性压力传感器的制备及其性能[J]. 纺织学报, 2025, 46(02): 113-121.
[3] 史雅楠, 马颜雪, 樊平, 薛文良, 李毓陵. 织边结构弹性传感机织带的制备及其传感性能影响因素[J]. 纺织学报, 2024, 45(11): 114-120.
[4] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
[5] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[6] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[7] 李露红, 罗天, 丛洪莲. 针织一体成形电容传感器设计及其性能[J]. 纺织学报, 2024, 45(10): 80-88.
[8] 汪宇佳, 王怡, 王雅思, 代方银, 李智. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(09): 10-17.
[9] 张琦, 屠佳妮, 张燕婷, 丁宁宇, 郝佳姝, 彭诗语. 经编贾卡间隔鞋面材料提花层结构对其拉伸性能的影响[J]. 纺织学报, 2024, 45(08): 150-157.
[10] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
[11] 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226.
[12] 何芳, 郭嫣, 韩朝旭, 刘铭燊, 杨瑞瑞. 汽车座椅用织物的复合工艺及其性能[J]. 纺织学报, 2024, 45(05): 79-84.
[13] 刘懿德, 李凯, 姚久勇, 成芳芳, 夏延致. 纤维素水凝胶纤维的制备及其阻燃传感性能[J]. 纺织学报, 2024, 45(04): 1-7.
[14] 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66.
[15] 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!