纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 158-166.doi: 10.13475/j.fzxb.20231204001
• 染整工程 • 上一篇
SHE Yemei, PENG Yangyang, WANG Fameng, PAN Ruru(
)
摘要: 针对目前部分柔性传感器制作成本高、过程复杂且难以一体化集成到纺织品中,限制其进一步发展与应用等问题,通过集成经编间隔织物与导电复合材料于一体,制备了具有优异传感性能的多孔导电柔性压力传感器,对其传感性能进行研究,并探讨了其在人体运动方面潜在的应用和未来工业化生产的潜力。结果表明:基于经编间隔织物的柔性压力传感器在0~160 kPa范围内具有良好的灵敏度和线性度;在10 kPa压力下响应时间为140 ms,恢复时间为166 ms,足以实时监测人体运动信号;在大于2 000次循环按压后仍能保持稳定的电阻变化,表现出优异的耐久性。该传感器的制备方法简单,成本低,可为柔性压力传感器的产业化生产提供有效的方法和途径。
中图分类号:
| [1] | 门海蛟, 宋健尧, 黄秉经, 等. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21):41-63. |
| MEN Haijiao, SONG Jianyao, HUANG Bingjing, et al. Research progress of flexible wearable electronic strain sensors[J]. Materials Reports, 2023, 37(21):41-63. | |
| [2] | MA L, SHUAI X, HU Y, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer[J]. Journal of Materials Chemistry C, 2018, 6(48): 13232-13240. |
| [3] | LI W, JIN X, HAN X, et al. Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19211-19220. |
| [4] | KIM J, BYUN S, LEE S, et al. Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester[J]. Nano Energy, 2020, 75: 104992. |
| [5] | ZOU J, ZHANG M, HUANG J, et al. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor[J]. Advanced Energy Materials, 2018. DOI:10.1002/aenm.201702671. |
| [6] | ZAZOUM B, BATOO K M, KHAN M A A. Recent advances in flexible sensors and their applications[J]. Sensors, 2022. DOI: 10.3390/s22124653. |
| [7] | CHEN T, WU G, PANAHI-SARMAD M, et al. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions[J]. Composites Science and Technology, 2022. DOI:10.1016/j.compscitech.2022.109563. |
| [8] | CHENG H, ZHANG N, YIN Y, et al. A high-performance flexible piezoresistive pressure sensor features an integrated design of conductive fabric electrode and polyurethane sponge[J]. Macromolecular Materials and Engineering, 2021. DOI:10.1002/mame.202100263. |
| [9] | 李港华, 王航, 史宝会, 等. 柔性压力传感器的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(2):96-102. |
| LI Ganghua, WANG Hang, SHI Baohui, et al. Construction of flexible electronic fabrics and their pressure sensing performance[J]. Journal of Textile Research, 2023, 44(2):96-102. | |
| [10] | 王迎豪, 杨昆. 经编间隔织物压缩性能研究[J]. 针织工业, 2022(12):10-14. |
| WANG Yinghao, YANG Kun. Compressive properties of warp knitted spacer fabric[J]. Knitting Industries, 2022(12):10-14. | |
| [11] | CHEN B, LI H, ZHANG S, et al. High-performance and superhydrophobic piezoresistive pressure sensor based on mountain ridge-like microstructure by silver nanoparticles and reduced graphene oxide[J]. Composites Part A: Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2022.107171 |
| [12] | 赵秀华, 徐伟, 易旺民, 等. 基于Ag/CNTs-PDMS的高灵敏度柔性压力传感器研制及性能测试[J]. 航天器环境工程, 2019, 36(3):271-277. |
| ZHAO Xiuhua, XU Wei, YI Wangmin, et al. Development and performance test of high sensitivity flexible pressure sensor based on Ag/CNTs-PDMS[J]. Spacecraft Environmental Engineering, 2019, 36(3):271-277. | |
| [13] | WANG F, LI H, HU P, et al. Industrially scalable textile sensing interfaces for extended artificial tactile and human motion monitoring without compromising comfort[J]. ACS Applied Materials & Interfaces, 2024, DOI:10.1021/acsami.4c00423. |
| [14] | 陈奕汛, 吴倩, 李倩, 等. 多层结构柔性压力传感织物的设计与性能[J]. 纺织科技进展, 2024, 46(2):14-17,22. |
| CHEN Yixun, WU Qian, LI Qian, et al. Design and Performance of multilayer flexible pressure sensing fabric[J]. Progress in Textile Science & Technology, 2024, 46(2):14-17,22. | |
| [15] | JUNG Y, JUNG K K, KIM D H, et al. Linearly sensitive and flexible pressure sensor based on porous carbon nanotube/polydimethylsiloxane composite structure[J]. Polymers, 2020. DOI:10.3390/polym12071499. |
| [16] | MU C, GUO X, ZHU T, et al. Flexible strain/pressure sensor with good sensitivity and broad detection range by coupling PDMS and carbon nanocapsules[J]. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.165696. |
| [17] | 郭鑫雷, 刘鑫, 胡汉春, 等. 多孔聚二甲基硅氧烷/碳纳米管复合压阻式柔性压力传感器的制备[J]. 轻工机械, 2023, 41(2):34-41. |
| GUO Xinlei, LIU Xin, HU Hanchun, et al. Preparation of porous polydimethylsiloxane/carbon nanotube composite piezoresistive flexible pressure sensor[J]. Light Industry Machinery, 2023, 41(2):34-41. | |
| [18] | 曹少杰, 杨奥林, 肖学良. 棉织物/PVA/CNTs复合柔性压阻式压力传感器的制备与性能研究[J]. 传感技术学报, 2021, 34(6):728-732. |
| CAO Shaojie, YANG Aolin, XIAO Xueliang. Preparation and properties study of cotton fabric /PVA/CNTS composite flexible piezoresistive pressure sensor[J]. Chinese Journal of Sensors and Actuators, 2021, 34(6):728-732. |
| [1] | 范梦晶, 岳欣琰, 邵剑波, 陈雨, 洪剑寒, 韩潇. 基于静电纺纤维包芯纱的电容式扭转传感器构建及其传感性能[J]. 纺织学报, 2025, 46(02): 106-112. |
| [2] | 张蕊, 叶苏娴, 王建, 邹专勇. 全织物型离电式柔性压力传感器的制备及其性能[J]. 纺织学报, 2025, 46(02): 113-121. |
| [3] | 史雅楠, 马颜雪, 樊平, 薛文良, 李毓陵. 织边结构弹性传感机织带的制备及其传感性能影响因素[J]. 纺织学报, 2024, 45(11): 114-120. |
| [4] | 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54. |
| [5] | 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160. |
| [6] | 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169. |
| [7] | 李露红, 罗天, 丛洪莲. 针织一体成形电容传感器设计及其性能[J]. 纺织学报, 2024, 45(10): 80-88. |
| [8] | 汪宇佳, 王怡, 王雅思, 代方银, 李智. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(09): 10-17. |
| [9] | 张琦, 屠佳妮, 张燕婷, 丁宁宇, 郝佳姝, 彭诗语. 经编贾卡间隔鞋面材料提花层结构对其拉伸性能的影响[J]. 纺织学报, 2024, 45(08): 150-157. |
| [10] | 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98. |
| [11] | 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226. |
| [12] | 何芳, 郭嫣, 韩朝旭, 刘铭燊, 杨瑞瑞. 汽车座椅用织物的复合工艺及其性能[J]. 纺织学报, 2024, 45(05): 79-84. |
| [13] | 刘懿德, 李凯, 姚久勇, 成芳芳, 夏延致. 纤维素水凝胶纤维的制备及其阻燃传感性能[J]. 纺织学报, 2024, 45(04): 1-7. |
| [14] | 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66. |
| [15] | 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167. |
|
||