纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 98-108.doi: 10.13475/j.fzxb.20231102401
郭琦1,2, 吴宁1,2(
), 孟影1,2, 安达1,2, 黄建龙1,2, 陈利1,2
GUO Qi1,2, WU Ning1,2(
), MENG Ying1,2, AN Da1,2, HUANG Jianlong1,2, CHEN Li1,2
摘要:
为实现天线罩用三维立体织物的近净成形,以头锥体立体特征为依据,角联锁结构为织物基础组织,提出了基于椭圆形纱线截面假设的变厚度层数计算模型和变截面经纱加列模型,并由此建立了织物纤维体积分数的预测模型,完成了头锥体结构织物顶部到薄壁均匀过渡的工艺设计与实验验证。研究结果表明,层数计算模型和经纱加列模型分别实现了织物厚度和织物截面的连续变化,其试织织物的三坐标扫描图与所设计头锥体三维模型相似度达97.36%,纤维体积分数与预测值误差为1.84%,验证了变厚度头锥体织物结构设计方案的可行性,并且织造过程中使用沿纬斜方向线密度梯度变化的经纬纱线有利于减小织物内层接线处的摩擦,提高预制体性能。
中图分类号:
| [1] | 王旭, 闵尔君, 李少聪, 等. 基于平织机的管状三维机织物设计及其矩阵模型[J]. 纺织学报, 2023, 44(8):103-109. |
| WANG Xu, MIN Erjun, LI Shaocong, et al. Tubular 3D woven fabric design based on flat loom and its matrix model[J]. Journal of Textile Research, 2023, 44(8):103-109. | |
| [2] | LI Z, LI D, ZHU H, et al. Mechanical properties prediction of 3D angle-interlock woven composites by finite element modeling method[J]. Materials Today Communications, 2020. DOI: 10.1016/j.mtcomm.2019.100769. |
| [3] | HUANG T, WANG Y, WANG G. Review of the mechanical properties of a 3D woven composite and its applications[J]. Polymer-Plastics Technology and Engineering, 2018, 57(8):740-756. |
| [4] | REN Y, ZHANG B, ZHONG Z, et al. Reusable, high specific surface areas, and excellent thermal stability Al2O3-SiO2 aerogel composites as high-temperature thermal insulators for radome applications[J]. Journal of alloys and compounds, 2024. DOI: 10.1016/j.jallcom.2024.173990. |
| [5] | 刘菁, 靖逸凡. 圆锥壳体三维织物的织造及其性能[J]. 棉纺织技术, 2018, 46(5):37-40. |
| LIU Jing, JING Yifan. Weaving and properties of three-dimensional fabric with conical shell[J]. Cotton Textile Technology, 2018, 46(5):37-40. | |
| [6] | 张长龙, 陈利, 王静, 等. 防弹头盔用三维机织预制体的曲面成型性研究[J]. 兵工学报, 2024, 45(6):2017-2024. |
| ZHANG Changlong, CHEN Li, WANG Jing, et al. Study on surface formability of three-dimensional woven preform for bulletproof helmet[J]. Defence Technology, 2024, 45(6):2017-2024 | |
| [7] | 刘俊岭. 减纱对2.5D织物变形性及其复合材料力学性能的影响[D]. 天津: 天津工业大学, 2018:9-16. |
| LIU Junling. Influence of yarn reduction on deformability of 2.5D fabric and mechanical properties of its composites[D]. Tianjin:Tiangong University, 2018:9-16. | |
| [8] | WANG N, WEN W, CHANG Y, et al. Quasi-static mechanical behavior of 2.5D woven variable thickness composites[J]. Composite Structures, 2024. DOI: 10.1016/j.compstruct.2023.117759. |
| [9] | LI M, ZHANG B, LIU K, et al. Study on the shear-pretension coupling behavior of 3D uniform and variable thickness woven fabrics[J]. Polymer Testing, 2023. DOI: 10.1016/j.polymertesting.2023.107963. |
| [10] | LIU A, ZHOU X, GAO Y, et al. Bending property of novel 3D woven variable thickness composites: Experiment and finite element analysis[J]. Polymer Composites, 2023, 44(3):1993-2004. |
| [11] | ZHOU Y, WEN W, CUI H. Spatial modelling of 3D woven variable thickness composite plate at the mesoscopic scale[J]. Composite Structures, 2020. DOI: 10.1016/j.compstruct.2020.111946. |
| [12] | 窦宏通, 王晓旭, 刘晓东, 等. 三维异型纺织复合材料的预制体织造技术及材料力学性能研究进展[J]. 材料工程, 2023, 51(4):88-102. |
| DOU Hongtong, WANG Xiaoxu, LIU Xiaodong, et al. Research progress on weaving technology and mechanical properties of three-dimensional profiled textile composites[J]. Materials Engineering, 2023, 51(4):88-102. | |
| [13] | KUNDAK H, BILISIK K. Development of three-dimensional (3D) biodegradable polyglycolic acid fiber (PGA) preforms for scaffold applications: experimental patterning and fiber volume fraction-porosity modeling study[J]. Polymers, 2023. DOI:10.3390/polym15092083. |
| [14] | NASSER S, HALLAL A, HAMMOUD M, et al. Geometrical modeling of yarn's cross-section towards a realistic unit cell of 2D and 3D woven composites[J]. Journal of The Textile Institute, 2021, 112(5):767-782. |
| [15] | AGWU N, OZOEGWU C G. Critical investigation on the effect of fiber geometry and orientation on the effective mechanical properties of fiber-reinforced polymer composites[J]. Mechanics of Advanced Materials and Structures, 2023, 30(15):3051-3060. |
| [16] | 周光明, 王新峰, 王鑫伟, 等. 三维机织复合材料的力学模型与实验验证[J]. 南京航空航天大学学报, 2004(4):444-448. |
| ZHOU Guangming, WANG Xinfeng, WANG Xinwei, et al. Mechanical model and experimental verification of 3D woven composites[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2004(4):444-448. | |
| [17] | 李磊, 容治军, 仇普霞, 等.一种回转壳体织物的封顶织造方法及回转壳体织物的织造方法:110258003A[P]. 2020-12-01. |
| LI Lei, RONG Zhijun, QIU Puxia, et al. A top-capping weaving method of rotary shell fabric and the weaving method of rotary shell fabric: 110258003A[P]. 2020-12-01. |
| [1] | 陈钰珊, 蒋高明, 李炳贤. 基于双扎口的纬编管状无缝织物三维仿真[J]. 纺织学报, 2024, 45(10): 95-102. |
| [2] | 吕丽华, 庞现柯, 刘澳. 变厚度三维机织复合材料的抗冲击性能[J]. 纺织学报, 2024, 45(09): 91-96. |
| [3] | 王遵钦, 刘东炎, 王晓旭, 张典堂. 机织角联锁变密度复合材料的面外压缩力学特性[J]. 纺织学报, 2024, 45(07): 63-71. |
| [4] | 王一品, 李小辉. 服装褶皱形态的参数化表征方法[J]. 纺织学报, 2024, 45(06): 149-154. |
| [5] | 徐辉, 朱昊, 潘苏情, 史红艳, 应迪. 基于变截面复丝模型的机织物模拟[J]. 纺织学报, 2024, 45(05): 70-78. |
| [6] | 董智佳, 郭燕雨秋, 刘海桑, 姚思宏. 经编全成形镂空紧身衣的结构设计与实现[J]. 纺织学报, 2023, 44(12): 130-137. |
| [7] | 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74. |
| [8] | 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213. |
| [9] | 周赳, 胡伊丽. 等经浮长的三纬组合全显结构设计与应用[J]. 纺织学报, 2023, 44(06): 78-84. |
| [10] | 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27. |
| [11] | 陈弈菲, 刘驰, 杨萌. 基于响应曲面分析的连体泳装结构情绪测量[J]. 纺织学报, 2022, 43(10): 161-168. |
| [12] | 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210. |
| [13] | 鲁虹, 宋佳怡, 李圆圆, 滕峻峰. 基于合体两片袖的内旋造型结构设计[J]. 纺织学报, 2022, 43(08): 140-146. |
| [14] | 董智佳, 孙菲, 丛洪莲, 俞旭良. 低损耗纬编成形女士背心的结构设计与建模[J]. 纺织学报, 2022, 43(07): 129-134. |
| [15] | 雷鸽, 李小辉. 数字化服装结构设计技术的研究进展[J]. 纺织学报, 2022, 43(04): 203-209. |
|
||