纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 52-57.doi: 10.13475/j.fzxb.20190204106

• 纺织工程 • 上一篇    下一篇

管道修复用涤纶/苎麻非织造复合材料拉伸强度

伏立松1, 张淑洁1(), 王瑞1,2, 杨兆薇1, 荆梦轲1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
  • 收稿日期:2019-02-25 修回日期:2019-11-25 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 张淑洁
  • 作者简介:伏立松(1992—),男,博士生。主要研究方向为管状纺织复合材料。
  • 基金资助:
    国家自然科学基金青年基金项目(51303128);天津市应用基础与前沿技术研究计划重点项目(15JCZDJC38400)

Tensile strength of polyester/ramie nonwoven composite applied on pipeline rehabilitation

FU Lisong1, ZHANG Shujie1(), WANG Rui1,2, YANG Zhaowei1, JING Mengke1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2019-02-25 Revised:2019-11-25 Online:2020-02-15 Published:2020-02-21
  • Contact: ZHANG Shujie

摘要:

为减少涤纶用量以保护石油资源,制备了涤纶/苎麻混杂非织造复合材料。分析了涤纶/苎麻混杂量对非织造复合材料在管道翻衬施工及修复中拉伸强度的影响,利用复合材料混合定律和胡克定律建立了管道修复用涤纶/苎麻非织造材料内衬复合材料的理论临界混杂比和拉伸强度计算公式。结果表明:理论临界混杂比为0.177,实验所得临界混杂比在0.2附近,实验拉伸强度与理论拉伸强度的变化规律基本一致。临界混杂比和拉伸强度计算公式具有较高的实用性,可为翻衬修复受损大管径、非压力排污或排水管道的管状非织造复合材料的设计和生产加工提供参考。

关键词: 管道修复, 涤纶/苎麻非织造复合材料, 混杂理论, 临界体积分数, 拉伸强度

Abstract:

In order to reduce the requirements of polyester resources hence the petroleum resources, polyester/ramie hybrid nonwoven composites were prepared. It was found that hybridizing polyester and ramie would have certain effect on the tensile strength of the pipeline after lining construction and repair. In this paper, the formulae for calculating the critical hybrid ratio and tensile strength of polyester/ramie nonwovens lining composites for pipeline repairing were established based on the law of mixing of composite materials and Hooke's law. The theoretical ratio was found to be 0.177 and the experimental ratio was around 0.2. The experimental tensile strength was basically consistent with the theoretical prediction. The results show that the formula for calculating critical hybrid ratio and tensile strength are practically useful, which can provide theoretical basis for the design and manufacture of tubular nonwovens composites for repairing damaged pipelines with pipes with large pipe diameters, such as non-pressure sewage and drainage.

Key words: pipeline rehabilitation, polyester/ramie nonwoven composite, hybrid theory, critical volume fraction, tensile strength

中图分类号: 

  • TB332

图1

单层复合材料板模型"

图2

不同涤纶体积分数的涤纶/苎麻非织造复合材料的理论拉伸强度"

表1

不同涤纶体积分数的涤纶/苎麻非织造复合材料的拉伸强度"

涤纶体积
分数/%
拉伸强度/MPa 涤纶体积
分数/%
拉伸强度/MPa
纵向 横向 纵向 横向
0 53.44 36.84 40 56.45 34.74
10 48.85 30.96 60 64.83 45.86
20 42.69 27.36 80 75.89 52.55
30 51.04 29.56 100 88.64 58.36

图3

涤纶体积分数为20%附近的复合材料拉伸强度"

图4

涤纶/苎麻非织造复合材料的纵横向断裂面形貌(×50)"

[1] KARA T, BHAGAT R M, BHATTACHARYYA P. Municipal solid waste generation, composition, and management: the world scenario[J]. Critical Reviews in Environmental Science and Technology, 2012,42(15):1509-1630.
[2] YANG W. Discussion on design of non-excavation construction for sewage drainage pipe[J]. Urban Roads Bridges & Flood Control, 2012,2(1):67-69.
[3] 马保松. 非开挖管道修复更新技术[M]. 北京:人民交通出版社, 2014: 108-110.
MA Baosong. Trenchless pipeline rehabilitation and renewal technology[M]. Beijing:China Communications Press, 2014: 108-110.
[4] YU H N, KIM S S, HWANG I U, et al. Application of natural fiber reinforced composites to trenchless rehabilitation of underground pipes[J]. Composite Structures, 2008,86(1):285-290.
[5] 孙林. 苎麻纤维物理性能[J]. 化纤与纺织技术, 2004(2):20-22.
SUN Lin. Research on physical performance of ramie fiber[J]. Chemical Fiber & Textile Technology, 2004(2):20-22.
[6] 闫丹. 管道修复用涤纶/苎麻混杂非织造复合材料的研究[D]. 天津:天津工业大学, 2014: 46-51.
YAN Dan. Study on ramie/polyester hybrid nonwoven composite for pipeline repair[D]. Tianjin: Tiangong University, 2014: 46-51.
[7] 罗凯, 张淑洁, 闫佳欣, 等. 管道修复用涤纶-苎麻复合机织物性能试验[J]. 复合材料学报, 2017,34(6):1245-1251.
LUO Kai, ZHANG Shujie, YAN Jiaxin, et al. Performance test of ramie-polyester composite woven fabric applied on pipeline rehabilitation[J]. Acta Materiae Compositae Sinica, 2017,34(6):1245-1251.
[8] 罗凯. 管道修复用管状涤纶/苎麻复合机织物复合材料的研究[D]. 天津:天津工业大学, 2017: 36-46.
LUO Kai. Study on tubular polyester/ramie composite woven fabric composite for pipeline repair[D]. Tianjin: Tiangong University, 2017: 36-46.
[9] 代少俊. 高性能纤维复合材料[M]. 上海:华东理工大学出版社, 2013: 90-96.
DAI Shaojun. High performance fiber composites[M]. Shanghai:East China University of Science and Technology Press, 2013: 90-96.
[10] 张淑洁, 王瑞, 徐磊, 等. 管状纺织复合材料力学性能的有限元分析[J]. 纺织学报, 2008,29(5):51-54.
ZHANG Shujie, WANG Rui, XU Lei, et al. Finite element analysis of mechanical properties of the tubular textile composites[J]. Journal of Textile Research, 2008,29(5):51-54.
[11] 陈汝训. 混杂纤维复合材料受拉构件的最优混杂比研究[J]. 固体火箭技术, 2005,28(3):219-221.
CHEN Ruxun. Study on optimal hybrid fiber composite tension member[J]. Journal of Solid Rocket Technology, 2005,28(3):219-221.
[12] 赵谦, 王善元. 单向混杂复合材料拉伸性能的两级分析[J]. 南京理工大学学报(自然科学版), 2007,31(6):766-770.
ZHAO Qian, WANG Shanyuan. Two-step analysis of tensile behaviors of unidirectional hybrid composies[J]. Journal of Nanjing University of Science and Techno-logy(Natural Science Edition), 2007,31(6):766-770.
[13] 陈汝训. 混杂纤维复合材料的体积含量、质量含量和孔隙率[J]. 固体火箭技术, 2011,34(2):238-240.
CHEN Ruxun. Volume fraction, mass fraction and void fraction of hybrid fiber composite material[J], Journal of Solid Rocket Technology, 2011,34(2):238-240.
[14] RAWAL A, KAMESWARA RAO P V, RUSSELL S, et al. Effect of fiber orientation on pore size characteristics of nonwoven structures[J]. Journal of Applied Polymer Science, 2010,118(5):2668-2673.
[15] LEE S H, LEE J H, CHEONG S K, et al. A toughening and strengthening technique of hybrid composites with non-woven tissue[J]. Journal of Materials Processing Tech, 2008,207(1):21-29.
[16] LIN J H, YAN R S, WANG R, et al. Manufacturing and mechanical evaluation of HRBP/PPTA intra-ply hybrid nonwovens for protecting cushioning com-posites[J]. Advanced Materials Research, 2014,910:254-257.
[1] 宋星, 祝成炎, 蔡冯杰, 吕智宁, 田伟. 碱处理对涤纶/光敏树脂复合材料力学性能的影响[J]. 纺织学报, 2019, 40(07): 97-102.
[2] 张梅 贾紫璇 孙小娟 李宏伟. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018, 39(01): 1-5.
[3] 吴松 吕晓龙 武春瑞 高启君 张昊 李振东 孔晓. 拉伸残余应力对聚偏氟乙烯纤维力学性能的影响[J]. 纺织学报, 2017, 38(07): 28-33.
[4] 汪洋 吕晓龙 武春瑞 高启君 张如意. 高强度聚偏氟乙烯纤维的熔融纺丝法制备[J]. 纺织学报, 2015, 36(06): 1-6.
[5] 单鸿波 徐方 孙志宏 于海燕. 管状复合材料拉伸性能测试及夹具原型系统[J]. 纺织学报, 2013, 34(9): 134-0.
[6] 尤丽霞;张羡;李丹;李海祥;周文龙. 超声波处理对棉织物污渍去除的影响[J]. 纺织学报, 2011, 32(4): 91-94.
[7] 钱坤;曹海建;盛东晓;庄粟裕. 低温等离子体处理对芳纶界面性能的影响[J]. 纺织学报, 2010, 31(10): 10-13.
[8] 沈巨磊;于永玲;吕丽华. 基于废弃混纺纤维循环利用的板材成型技术及其性能[J]. 纺织学报, 2010, 31(1): 28-31.
[9] 张淑洁;王瑞;徐磊;王欢. 管状纺织复合材料力学性能的有限元分析[J]. 纺织学报, 2008, 29(5): 51-54.
[10] 王瑞;张淑洁;高艳章;王欢. 管道修复用管状纺织复合材料的力学性能[J]. 纺织学报, 2007, 28(6): 70-74.
[11] 王春红;王瑞;于飞. 竹原纤维的化学脱胶工艺[J]. 纺织学报, 2007, 28(4): 26-29.
[12] 张茂林;储长流;李龙. 单向芳纶/聚丙烯混纤复合材料拉伸性能研究[J]. 纺织学报, 2003, 24(03): 22-23.
[13] 李学明;张国利. 缝纫工艺对改善复合材料机械性能的研究[J]. 纺织学报, 2002, 23(03): 50-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!