纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 45-50.doi: 10.13475/j.fzxb.20190406506

• 纺织工程 • 上一篇    下一篇

不锈钢短纤维/棉包覆氨纶纱的弹性与电学性能

赵亚茹1,2, 肖红2,3(), 陈剑英1,2   

  1. 1.东华大学 纺织学院, 上海 201620
    2.军事科学院系统工程研究院 军需工程技术研究所, 北京 100010
    3.武汉纺织大学 材料科学与工程学院, 湖北 武汉 430000
  • 收稿日期:2019-04-23 修回日期:2019-12-15 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 肖红
  • 作者简介:赵亚茹(1994—),女,硕士生。主要研究方向为弹性电磁屏蔽织物的开发及性能。
  • 基金资助:
    国家自然科学基金面上项目(51673211)

Elastic and electrical properties of stainless steel fiber/cotton blended spandex wrap yarn

ZHAO Yaru1,2, XIAO Hong2,3(), CHEN Jianying1,2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Institute of Quartermaster Engineering & Technology, Institute of System Engineering, Academy of Military Science, Beijing 100010, China
    3. School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430000, China
  • Received:2019-04-23 Revised:2019-12-15 Online:2020-03-15 Published:2020-03-27
  • Contact: XIAO Hong

摘要:

为开发兼具弹性和导电性能的电磁功能纱线,以氨纶为芯丝、外包不锈钢短纤维/棉混纺纱,研制系列弹性不锈钢短纤维/棉包覆氨纶纱。在Instron 5566万能试验机上,结合万用表,获得弹性纱线的应力-应变、应变-电阻以及定伸长弹性回复曲线,研究纱线在不同拉伸状态下的电学性能。结果表明:不锈钢短纤维/棉包覆氨纶芯丝的纱线,存在氨纶芯丝的断裂现象,将不锈钢短纤维/棉包覆氨纶芯丝的纱线直接与氨纶丝或氨纶/棉包芯纱直接并合的方式,赋予纱线弹性;随着不锈钢短纤维含量的增加,弹性纱线的弹性伸长和回复性能都降低,塑性变形增加;随着弹性纱线应变的增加,其电阻先增加后降低。

关键词: 电磁功能纱线, 弹性回复率, 塑性变形率, 电学性能, 导电纱线

Abstract:

In order to develop electromagnetic functional yarns with both elastic and electrical properties, a series of elastic stainless steel fiber/cotton ammonia yarns were developed with spandex as the core yarn and wrapped with stainless steel fiber/cotton blended yarn. On the Instron 5566 tester, combined with a multimeter, the stress-strain, strain-resistance and elongational elastic recovery curves of the elastic yarn were obtained, and the electrical properties of the yarn under different tensile conditions were investigated. The results show that the addition of spandex yarn improves the elastic properties of stainless steel fiber/cotton blended yarn, but the spandex core yarn would fracture easily. When the content of stainless steel short fiber increases, the elastic elongation and recovery properties of elastic yarn decrease, and plastic deformation increases. The strain increases of the elastic yarn, causes the electrical resistance of the stainless steel fiber/cotton ammonia yarn to increase first and then decreases until the yarn breaks, and the maximum value of the resistance occurs when the spandex filament is straight but not elongated.

Key words: electromagnetic functional yarn, elastic recovery rate, plastic deformation rate, electrical properties, conductive yarn

中图分类号: 

  • TS155.6

表1

实验样品规格"

纱线
编号
纱线组成 线密度 捻度/
(捻·m-1)
1# 不锈钢短纤维/棉(30/70)包覆氨纶 16.4 tex
2# 不锈钢短纤维/棉(20/80)包覆氨纶 16.4 tex
3# 不锈钢短纤维/棉(30/70) 16.4 tex
4# 不锈钢短纤维/棉(20/80) 16.4 tex
5# 棉/氨纶(95/5) 49.2 tex
6# 2根1#纱合股 16.4 tex×2 460
7# 2根2#纱合股 16.4 tex×2 460
8# 1#和5#合股 16.4 tex+49.2 tex 320
9# 2#和5#合股 16.4 tex+49.2 tex 320
10# 2根1#和氨纶长丝并合 16.4 tex×2+4.44 tex 550
11# 2根2#和氨纶长丝并合 16.4 tex×2+4.44 tex 550

图1

不锈钢短纤维含量不同时纱线的弹性回复率和塑性变形率"

图2

弹性纱线拉伸过程中形貌变化示意图"

图3

弹性纱线典型的应力-应变和应变-电阻曲线"

图4

不同不锈钢短纤维含量纱线的应变-电阻曲线"

图5

不同弹性纱线的应变-电阻曲线"

图6

纱线1#、2#、6#、7#的应变-电阻曲线"

图7

纱线1#与10#的应变-电阻曲线"

图8

纱线2#与11#的应变-电阻曲线"

图9

纱线1#、2#、5#、6#、7#的表观形态"

图10

纱线1#的状态"

[1] 魏作红. 铜/镍磷合金复合镀涤纶电磁屏蔽织物的制备[J]. 北京服装学院学报(自然科学版), 2015,35(4):76-82.
WEI Zuohong. Preparation of copper/Ni-P alloy composite plating polyester electromagnetic shielding fabric[J]. Journal of Beijing Institute of Clothing Technology(Natural Science Edition), 2015,35(4):76-82.
[2] 田紫阳. 电磁屏蔽用导电橡胶制备工艺的研究[D]. 北京:北京工业大学, 2016: 11-20.
TIAN Ziyang. Research on preparation technology of conductive rubber for electromagnetic shielding[D]. Beijing:Beijing University of Technology, 2016: 11-20.
[3] 俞菁. 基于织物的PANI/Cu复合膜的构建及在电磁屏蔽织物上的应用[D]. 上海:上海工程技术大学, 2015: 5-15.
YU Jing. Construction of fabric-based PANI/Cu composite film and its application on electromagnetic shielding fabrics[D]. Shanghai:Shanghai University of Engineering and Technology, 2015: 5-15.
[4] JIANG S X, GUO R H. Electromagnetic shielding and corrosion resistance of electroless Ni-P/Cu-Ni multilayer plated polyester fabric[J]. Surface & Coatings Technology, 2011,205:4274-4279.
[5] 肖红, 施楣梧. 电磁纺织品研究进展[J]. 纺织学报, 2014,35(1):151-157.
XIAO Hong, SHI Meiwu. Research progress in electromagnetic textiles[J]. Journal of Textile Research, 2014,35(1):151-157.
[6] 肖红. 电磁辐射防护织物及服装的技术特点和标准分析[J]. 纺织导报, 2017(20):87-93.
XIAO Hong. Technical characteristics and standard analysis of electromagnetic radiation protection fabrics and garments[J]. China Textile Leader, 2017(20):87-93.
[7] 施楣梧, 王群. 电磁功能纺织材料[M]. 北京: 科学出版社, 2016: 18-30.
SHI Meiwu, WANG Qun. Electromagnetic functional textile materials [M]. Beijing: Science Press, 2016: 18-30.
[8] 施楣梧. 用有机导电纤维开发抗静电工作服面料[J]. 中国个体防护装备, 2003(4):13-15.
SHI Meiwu. Development of antistatic workwear fabrics with organic conductive fibers[J]. China Personal Protective Equipment, 2003(4):13-15.
[9] 朱正峰, 王军华. 不锈钢纤维及混纺纱性能探讨[J]. 中原工学院学报, 2007,18(4):22-24.
ZHU Zhengfeng, WANG Junhua. Discussion on properties of stainless steel fiber and blended yarn[J]. Journal of Zhongyuan Institute of Technology, 2007,18(4):22-24.
[10] 周淑雯, 胡吉永. 包覆结构对纱线应变传感器传感性能的影响[D]. 上海:东华大学, 2018: 15-23.
ZHOU Shuwen, HU Jiyong. The influence of the cladding structure on the sensing performance of the yarn strain sensor[D]. Shanghai:Donghua University, 2018: 15-23.
[11] ROSSI D D, DELLA S A, MAZZOLDI A. Dresswear:we are able hardwear[J]. Materials Science and Engineering, 1999,C7:31-35.
[12] LIAO X Q, LIAO Q L, ZHANG Z. A highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection[J]. Adv Funct Mater, 2016,26:3074-3081.
[13] 于志财, 王华平. 一种防电磁辐射的弹性包缠纱及由其制得的织物:ZL107475845A[P]. 2017-12-15.
YU Zhicai, WANG Huaping. An elastic wrapped yarn for preventing electromagnetic radiation and a fabric made therefrom:ZL107475845A[P]. 2017-12-15.
[14] 张娣. 一种电磁屏蔽包芯纱的生产方法:ZL107190387A[P]. 2017-09-22.
ZHANG Di. A method for producing electromagnetic shielding core yarn:ZL107190387A[P]. 2017-09-22.
[15] 肖红, 施楣梧. 张力条件下不同热处理对PTT纤维及毛/PTT混纺纱弹性的影响[J]. 毛纺科技, 2006(9):12-16.
XIAO Hong, SHI Meiwu. Effect of different heat treatment on tensile properties of PTT fiber and wool/PTT blended yarn under tension[J]. Wool Textile Journal, 2006(9):12-16.
[16] 刘杰英. PBST纤维及产品力学性能和织物风格研究[D]. 上海:东华大学, 2010: 20-28.
LIU Jieying. PBST fiber and product mechanical properties and fabric style research[D]. Shanghai:Donghua University, 2010: 20-28.
[1] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[2] 李清文 赵静娜 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用[J]. 纺织学报, 2018, 39(12): 145-151.
[3] 张岩 裴泽光 陈革. 喷气涡流纺金属丝包芯纱的制备及其结构与性能[J]. 纺织学报, 2018, 39(05): 25-31.
[4] 李丹丹 权利军 金肖克 田伟 祝成炎. 氨纶与双组分复合长丝/棉包芯纱的拉伸弹性[J]. 纺织学报, 2017, 38(05): 31-36.
[5] 洪剑寒 潘志娟 姚穆. 超高分子量聚乙烯/聚苯胺导电针织物的应变传感性能[J]. 纺织学报, 2016, 37(2): 73-78.
[6] 贾高鹏;来侃;孙润军. 基于Lab VIEW的纤维集合体微电流测试仪的研制[J]. 纺织学报, 2010, 31(3): 119-122.
[7] 冯志红.;朱良均;闵思佳;蔡杰;吕洁. 高弹高保暖丝绵的性能[J]. 纺织学报, 2007, 28(4): 22-25.
[8] 李慧;王府梅. PTT织物与棉氨包芯纱织物的弹性比较[J]. 纺织学报, 2005, 26(3): 32-34.
[9] 殷英贤;王懽;张建春;郭玉海. 聚四氟乙烯-聚氨酯复合膜的工艺探讨[J]. 纺织学报, 2004, 25(04): 36-37.
[10] 唐建国;李祚启;张曙光. 含铜聚丙烯睛基导电纤维稳定性的再研究[J]. 纺织学报, 1998, 19(03): 4-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!