纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 48-54.doi: 10.13475/j.fzxb.20200706307

• 纤维材料 • 上一篇    下一篇

超吸水改性棉纤维膜的制备及其性能

谢婉婷1, 刘其海1,2,3(), 贾振宇1,2,3, 朱小花3, 王荣辉3   

  1. 1.仲恺农业工程学院 化学化工学院, 广东 广州 510225
    2.广东维芊科技有限公司,广东 佛山 528216
    3.湛江博泰生物化工科技实业有限公司, 广东 湛江 524051
  • 收稿日期:2020-07-24 修回日期:2021-01-02 出版日期:2021-04-15 发布日期:2021-04-20
  • 通讯作者: 刘其海
  • 作者简介:谢婉婷(1995—),女,硕士生。主要研究方向为功能性高吸水材料。
  • 基金资助:
    广东省科技计划项目(2017A010103024);广东省科技计划项目(2020B121202014);广东省促进经济发展专项资金资助项目(粤自然资源合[2019]016号);湛江市海洋经济创新发展示范市建设项目(湛海创2017C4A);佛山市(南海区)科技创新项目(FS0AA-KJ919-4402-0057)

Preparation and performance of super absorbent modified cotton fiber membrane

XIE Wanting1, LIU Qihai1,2,3(), JIA Zhenyu1,2,3, ZHU Xiaohua3, WANG Ronghui3   

  1. 1. College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
    2. Guangdong Weiqian Technology Co., Ltd., Foshan, Guangdong 528216, China
    3. Zhanjiang Botai Bio-Chemical Technology Industrial Co., Ltd., Zhanjiang, Guangdong 524051, China
  • Received:2020-07-24 Revised:2021-01-02 Online:2021-04-15 Published:2021-04-20
  • Contact: LIU Qihai

摘要:

为制备具有较高吸水性及稳定性的超吸水纤维膜,首先利用氯乙酸对NaOH碱化处理后的棉纤维进行改性制备吸水纤维,然后通过溶液分散法将吸水纤维在水中分散成膜制备超吸水纤维膜材料。对纤维膜材料的表面结构、化学结构、结晶结构、热稳定性、羧甲基取代度、吸水性能及力学性能进行表征与分析。结果表明:对棉纤维进行碱化处理可促进氯乙酸与棉纤维之间取代反应的进行,氯乙酸的用量直接影响棉纤维上羧甲基的取代度,并对膜吸水性能的提高产生重要影响,但其用量过高会使纤维膜的拉伸强度显著下降;在羧甲基取代度约为0.264时,吸水纤维膜材料吸水后形态保持比较完整,并具有相对良好的力学性能,其吸水倍率可达约163.3倍,保水倍率可达约73.7倍。

关键词: 超吸水纤维膜, 氯乙酸, 亲水改性, 吸水材料, 羧甲基取代度, 棉纤维

Abstract:

In order to prepare super absorbent fiber membranes with higher water absorption and stability, the cotton fibers alkalized by NaOH were modified by the chloroacetic acid to enhance the water absorbence, and then the water-absorbent fibers were dispersed in water to prepare a super absorbent fiber membrane material. The surface structure, chemical structure, crystalline structure, thermal stability, the degree of carboxymethyl substitution, water absorption and mechanical properties of the fiber membrane material were eveluated and analyzed. The results show that alkali treatment to cotton fiber can promote the substitution reaction between chloroacetic acid and cotton fiber, and the amount of chloroacetic acid directly affects the degree of carboxymethyl substitution of cotton fiber, which has an important impact on the improvement in water absorption performance of the membrane. However, too high a dosage will significantly reduce the tensile strength of the fiber membrane. When the degree of carboxymethyl substitution is about 0.264, the shape of the absorbent fiber membrane material remains relatively complete after absorbing water, and has generally good mechanical properties, and its water absorption rate can reach 163.3 times, with the water retention rate reaching more than 73.7 times.

Key words: super absorbent fiber membrane, chloroacetic acid, hydrophilic modification, water-absorbent material, degree of carboxymethyl substitution, cotton fiber

中图分类号: 

  • TS102.6

图1

超吸水纤维膜制备路线示意图"

图2

超吸水纤维膜吸水前后实物图"

图3

改性前后棉纤维和纤维膜扫描电镜照片(×2 000)"

图4

不同NaOH质量分数处理的超吸水纤维膜红外光谱图"

图5

不同NaOH质量分数处理的超吸水纤维膜的热稳定曲线"

表1

不同NaOH质量分数处理的超吸水纤维膜的质量损失数据"

NaOH质量
分数/%
初始质量损失
温度/℃
第2阶段质量
损失温度/℃
第2阶段质量
损失率/%
总质量
损失率/%
0 35~70 332~371 67.6 99.7
15 35~70 257~316 42.9 71.4
18 35~75 252~332 46.3 68.5
20 248~320 37.7 61.9

图6

不同NaOH质量分数处理的超吸水纤维膜X射线衍射谱图"

表2

不同NaOH质量分数处理对超吸水纤维膜性能的影响"

NaOH质量
分数/%
羧甲基
取代度
吸水倍率 保水倍率 断裂强度/
MPa
断裂伸长
率/%
10 0.065 46.2 35.9
15 0.168 81.8 48.0 1.21 20.51
18 0.203 115.9 54.3 6.70 28.56
20 0.265 146.7 67.3 10.44 36.54
25 0.268 43.3 35.0 2.41 20.59

表3

不同氯乙酸用量对超吸水纤维膜性能的影响"

氯乙酸和棉纤
维质量比
羧甲基
取代度
吸水倍率 保水倍率 断裂强
度/MPa
断裂伸长
率/%
0.5∶1 0.157 58.7 34.9
1.0∶1 0.225 82.7 50.4 3.77 5.23
1.5∶1 0.238 125.6 60.0 4.46 39.09
2.0∶1 0.198 109.8 43.4 6.94 28.50
2.5∶1 0.191 81.8 38.0 1.21 6.53

表4

不同反应温度对超吸水纤维膜性能的影响"

反应温
度/℃
羧甲基
取代度
吸水倍率 保水倍率 断裂强
度/MPa
断裂伸长
率/%
55 0.172 70.6 31.3 1.21 26.50
60 0.211 109.8 44.3 3.12 28.51
65 0.248 114.5 63.3 3.61 36.00
70 0.232 88.5 57.1 2.16 27.50
75 0.225 73.0 51.8 2.14 24.00
[1] 徐德增, 李丹, 郭静, 等. 壳聚糖接枝丙烯酸吸水纤维的制备及性能[J]. 大连工业大学学报, 2009,28(5):351-353.
XU Dezeng, LI Dan, GUO Jing, et al. Preparation and properties of chitosan grafted acrylic acid absorbent fiber[J]. Journal of Dalian University of Technology, 2009,28(5):351-353.
[2] LURA P, TERRISI G P. Reduction of fire spalling in high-performance concrete by means of superabsorbent polymers and polypropylene fibers[J]. Cement and Concrete Composites, 2014,49:36-42.
[3] 赵桐辉. 超吸水纤维的制备及其在非织造材料中的应用前景[J]. 福建轻纺, 2011(7):52-54.
ZHAO Tonghui. Preparation of super absorbent fiber and its application prospects in nonwoven materials[J]. The Light & Textile Industries of Fujian , 2011(7):52-54.
[4] 李婷. 超吸水纤维在技术领域的应用[J]. 国际纺织导报, 2018,46(6):10.
LI Ting. Application of super absorbent fiber in technical field[J]. Melliand China, 2018,46(6):10.
[5] 闫瑛, 徐永建. 超吸水性纤维及其在一次性卫生用品领域的应用前景[J]. 纸和造纸, 2013(2):69-73.
YAN Ying, XU Yongjian. Super absorbent fiber and its application prospects in the field of disposable sanitary products[J]. Paper and Paper Making, 2013(2):69-73.
[6] BIDGOLI H, ZAMANI A, JEIHANIPOUR A, et al. Preparation of carboxymethyl cellulose superabsorbents from waste textiles[J]. Fibers & Polymers, 2014,15(3):431-436.
[7] WEI D, LIU Q, LIU Z, et al. Modified nano microfibrillated cellulose/carboxymethyl chitosan composite hydrogel with giant network structure and quick gelation formability[J]. International Journal of Biological Macromolecules, 2019,135:561-568.
pmid: 31102677
[8] 哈丽丹·买买提, 布佐热·克比尔. 纤维素氨基甲酸酯法制备纤维素海绵[J]. 化工学报, 2012,63(5):1637-1642.
HARIDAN Maimat, BOUZORER Kebier. Preparation of cellulose sponge by cellulose carbamate method[J]. CIESC Journal, 2012,63(5):1637-1642.
[9] 王香, 翟羽, 詹微. 羧甲基纤维素钠取代度的测定方法研究[J]. 食品安全质量检测学报, 2015,6(8):3145-3148.
WANG Xiang, ZHAI Yu, ZHAN Wei. Study on the determination method of substitution degree of sodium carboxymethyl cellulose[J]. Journal of Food Safety and Quality Inspection, 2015,6(8):3145-3148.
[10] 戴海玲. 高吸水性医用棉纱布的制备及性能研究[D]. 上海:东华大学, 2014: 17.
DAI Hailing. Preparation and performance study of super absorbent medical cotton gauze[D]. Shanghai:Donghua University, 2014: 17.
[11] 万震, 毛志平. 高亲水棉织物的新型制备方法[J]. 染整技术, 2003,25(4):9-12.
WAN Zhen, MAO Zhiping. A new preparation method of highly hydrophilic cotton fabric[J]. Textile Dyeing and Finishing Journal, 2003,25(4):9-12.
[12] 连素梅, 叶曦雯, 罗忻, 等. 棉纤维结构与理化性能关系分析[J]. 棉花科学, 2018,40(1):48-52.
LIAN Sumei, YE Xiwen, LUO Xin, et al. Analysis of the relationship between cotton fiber structure and physical and chemical properties[J]. Cotton Sciences, 2018,40(1):48-52.
[13] 王剑平. 医用纤维素敷料的改性与性能研究[D]. 青岛:青岛大学, 2015: 28-29.
WANG Jianping. Modification and performance of medical cellulose dressings[D]. Qingdao:Qingdao University, 2015: 28-29.
[14] 史晟, 侯文生, 郜娟, 等. 水热条件下棉纤维的结构演变特性[J]. 精细化工, 2016,33(4):366-371.
SHI Sheng, HOU Wensheng, GAO Juan, et al. Structural evolution characteristics of cotton fiber under hydrothermal conditions[J]. Fine Chemicals, 2016,33(4):366-371.
[15] LIU Yang, XIA Liangjun, ZHANG Qianguo, et al. Structure and properties of carboxymethyl cotton fabric loaded by reduced graphene oxide[J]. Carbohydrate Polymers, 2019,214:117-123.
pmid: 30925979
[16] MARTINEZ Sanz, MARTA Pettolino, FILOMENA Flanagan, et al. Structure of cellulose microfibrils in mature cotton fibres[J]. Carbohydrate Polymers, 2017,175:450-463.
doi: 10.1016/j.carbpol.2017.07.090 pmid: 28917888
[17] 张玲玲, 张军燚, 周乃锋. 高取代度羧甲基松木纤维素制备工艺优化及表征[J]. 浙江理工大学学报, 2014,31(11):610-616.
ZHANG Lingling, ZHANG Junyi, ZHOU Naifeng. Optimization and characterization of preparation process of high substitution carboxymethyl pine cellulose[J]. Journal of Zhejiang Sci-Tech University, 2014,31(11):610-616.
[18] 刘美霞, 胡立霞, 沈华, 等. 木棉纤维中组成物质分布及碱处理前后形态结构的变化[J]. 上海纺织科技, 2019,47(8):1-5.
LIU Meixia, HU Lixia, SHEN Hua, et al. Distribution of constituent substances in kapok fiber and changes in morphological structure before and after alkali treatment[J]. Shanghai Textile Science & Technology, 2019,47(8):1-5.
[1] 胡文, 王迪, 陈晓川, 汪军, 李勇. 锯齿轧花中含棉籽棉朵模型的构建与仿真[J]. 纺织学报, 2020, 41(09): 27-32.
[2] 张梦阳, 陈晓川, 汪军, 李勇. 基于ANSYS CFX的棉纤维马克隆值的建模与仿真[J]. 纺织学报, 2020, 41(07): 29-34.
[3] 邵金鑫, 张宝昌, 曹继鹏. 基于图像处理与深度学习方法的棉纤维梳理过程纤维检测识别技术[J]. 纺织学报, 2020, 41(07): 40-46.
[4] 张戈, 周建, 王蕾, 潘如如, 高卫东. 用分光光度计法测量纤维颜色的影响因素[J]. 纺织学报, 2020, 41(04): 72-77.
[5] 邓茜茜, 杨瑞华, 徐亚亚, 高卫东. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(07): 31-37.
[6] 郭淑华 王建坤 钱晓明. 微波辅助羧甲基玉米淀粉的制备及其上浆性能[J]. 纺织学报, 2018, 39(12): 59-66.
[7] 陶金 张德锁 林红 陈宇岳. 介孔氧化硅/棉复合纤维对染料的吸附性能[J]. 纺织学报, 2018, 39(10): 93-98.
[8] 陈丽丽 楼利琴 傅雅琴. 木棉纤维/棉混纺织物结构参数对其保暖透气性影响[J]. 纺织学报, 2018, 39(06): 47-51.
[9] 白婧 杨柳 张毅 张瑞云 马颜雪 俞建勇 程隆棣. 纯棉色纺纱配色中的Stearns-Noechel模型参数优化[J]. 纺织学报, 2018, 39(03): 31-37.
[10] 俞俭 王业师 吕景春 周天池 魏取福. 低温等离子体处理木棉纤维的染色性能[J]. 纺织学报, 2017, 38(12): 88-94.
[11] 吉强 王晓 戚俊然 崔永珠 吕丽华. 光接枝丙烯酸棉纤维素基TiO2/C光催化剂的制备与光催化性[J]. 纺织学报, 2017, 38(10): 75-80.
[12] 蓝杰蕊 沈锦玉 李玖明 陈建勇 郭玉海 张华鹏 . 紫外光固化技术对聚丙烯非织造布的亲水改性[J]. 纺织学报, 2017, 38(05): 98-103.
[13] 苏玉恒 孔繁荣. 采用窗函数的棉纤维线密度分布表征[J]. 纺织学报, 2017, 38(01): 46-51.
[14] 王梦琴 王树根. 棉纤维阳离子化的简易定量检测方法[J]. 纺织学报, 2016, 37(4): 75-79.
[15] 李瑞雪 沈小林 张兴亚 肖杏芳 江珊 尹维维. 原位生成二氧化钛对棉纤维抗紫外线性能的影响[J]. 纺织学报, 2016, 37(3): 78-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!