纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 68-73.doi: 10.13475/j.fzxb.20201205106

• 纺织工程 • 上一篇    下一篇

硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响

邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎()   

  1. 浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
  • 收稿日期:2020-12-18 修回日期:2022-01-19 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 祝成炎
  • 作者简介:邵灵达(1995—),男,博士生。主要研究方向为纺织复合材料。
  • 基金资助:
    浙江理工大学研究生优秀学位论文培育基金项目(11150031272003)

Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites

SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan()   

  1. Key Laboratory for Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-12-18 Revised:2022-01-19 Published:2022-04-15 Online:2022-04-20
  • Contact: ZHU Chengyan

摘要:

针对聚苯硫醚存在韧性差的问题,通过热压成型工艺将玻璃纤维织物与聚苯硫醚树脂混合制备玻璃纤维增强聚苯硫醚复合材料。为获得较好的界面黏结性能,采用硅烷偶联剂KH560对玻璃纤维进行改性处理。借助扫描电子显微镜、摆锤冲击试验机、万能试验机等研究了不同质量分数硅烷偶联剂KH560处理对玻璃纤维表面形态及复合材料力学性能的影响。结果表明:当硅烷偶联剂KH560质量分数为2%时,玻璃纤维与聚苯硫醚基体结合得最好;经改性处理的玻璃纤维增强复合材料的拉伸强度、弯曲强度和冲击强度分别达到51.9 MPa、78 MPa和39.6 kJ/m2,相比于未处理前分别提升57.8%、51.8%和48.3%。

关键词: 玻璃纤维, 聚苯硫醚, 硅烷偶联剂, 复合材料, 改性, 力学性能

Abstract:

To solve the problem of poor toughness of polyphenylene sulfide, glass fiber reinforced polyphenylene sulfide composites were prepared by mixing glass fiber fabrics with polyphenylene sulfide through hot pressing. In order to obtain better interfacial bonding properties, silane coupling agent KH560 was used to modify the surface of glass fiber. By means of scanning electron microscope, pendulum impact tester and universal tester, the changes of surface morphology of glass fiber treated with different concentrations of silane coupling agent KH560 and its effect on the mechanical properties of the composites were studied. The results show that when the mass fraction of the silane coupling agent KH560 is 2%, the glass fiber and the polyphenylene sulfide matrix achieves the best bonding, and the tensile strength, flexural strength and impact strength of the modified glass fiber reinforced composite reach 51.9 MPa, 78 MPa and 39.6 kJ/m2 respectively, representing increases of 57.8%, 51.8% and 48.3% compared with untreated.

Key words: glass fiber, polyphenylene sulfide, silane coupling agent, composite, modification, mechanical property

中图分类号: 

  • TS15

图1

热压成型铺层图 1—上盖板; 2—聚酰亚胺薄膜; 3—预制件;4—聚酰亚胺薄膜; 5—垫片; 6—下模具。"

图2

硅烷偶联剂KH560处理对玻璃纤维织物形貌的影响"

图3

硅烷偶联剂KH560与玻璃纤维作用机制示意图"

表1

不同硅烷偶联剂KH560质量分数处理的织物质量增加率"

KH560质量分数 质量增加率
0
1 0.37
2 0.52
3 0.85
4 0.93

图4

不同硅烷偶联剂KH560质量分数处理织物的拉伸强度"

图5

玻璃纤维织物增强聚苯硫醚复合材料截面SEM照片"

图6

硅烷偶联剂与聚苯硫醚的作用机制"

图7

KH560质量分数对复合材料力学性能的影响"

[1] CHEN G, MOHANTY A K, MISRA M. Progress in research and applications of polyphenylene sulfide blends and composites with carbons[J]. Composites Part B: Engineering, 2020, 209(434): 108553.
doi: 10.1016/j.compositesb.2020.108553
[2] 刘强飞, 吴韶华, 杨吉震, 等. 芳纶纳米纤维改性聚四氟乙烯/聚苯硫醚针刺毡的制备及其性能[J]. 纺织学报, 2021, 42(10): 47-52.
LIU Qiangfei, WU Shaohua, YANG Jizhen, et al. Preparation and properties of polytetrafluoroethylene/phenylene sulfide needled felt modified by aramid nanofiber[J]. Journal of Textile Research, 2021, 42(10): 47-52.
[3] LOHR C, BECK B, HENNING F, et al. Mechanical properties of foamed long glass fiber reinforced polyphenylene sulfide integral sandwich structures manufactured by direct thermoplastic foam injection molding[J]. Composite Structures, 2019, 220: 371-385.
doi: 10.1016/j.compstruct.2019.03.056
[4] XIA Y, SUN Y H, AN Y L, et al. Preparation and properties of polyphenylene sulfide composite enhanced by CNTs/carbon fibers[J]. Chemistry and Adhesion, 2015, 37(1): 11-14.
[5] ZHAO L, HUANG Z, XIONG S, et al. Polyphenylene sulfide composite laminate from flexible nonwovens and carbon fiber fabrics prepared by thermal lamination and thermal treatment[J]. Polymer Bulletin, 2019, 76(11): 5633-3648.
doi: 10.1007/s00289-018-2667-5
[6] IVANOV V B, SOLINA E V, SAMORYADOV A V. The effect of irradiation conditions on photodegradation of a impact resistant polyphenylene sulfide-based composite[J]. Polymer Science Series D, 2020, 13(3): 353-357.
doi: 10.1134/S1995421220030089
[7] 杨桂生, 刘明昌. 一种聚苯硫醚/尼龙合金材料及其制备方法: 201310097914.X[P]. 2014-10-01.
YANG Guisheng, LIU Mingchang. A polyphenylene sulfide/nylon alloy material and its preparation method: 201310097914.X[P]. 2014-10-01.
[8] PANNEERSELVAM K, ARAVINDAN S, HAQ A N. Study on resistance welding of glass fiber reinforced thermoplastic composites[J]. Materials & Design, 2012, 41(10): 453-459.
doi: 10.1016/j.matdes.2012.05.025
[9] 李方舟. 短切玻纤增强聚苯硫醚复合材料的制备与性能研究[D]. 青岛:青岛科技大学, 2017: 4-8.
LI Fangzhou. Preparation and properties of chopped glass fiber reinforced polyphenylene sulfide compo-sites[D]. Qingdao: Qingdao University of Science and Technology, 2017: 4-8.
[10] 常青. 聚苯硫醚树脂合成的实验研究[D]. 兰州:兰州大学, 2016: 5-8.
CHANG Qing. Experimental study on the synthesis of polyphenylene sulfide resin[D]. Lanzhou: Lanzhou University, 2016: 5-8.
[11] 宋星, 金肖克, 祝成炎, 等. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(1): 73-77.
SONG Xing, JIN Xiaoke, ZHU Chengyan, et al. 3D printing and mechanical properties of glass fiber/photosensitive resin composites[J]. Journal of Textile Research, 2021, 42(1): 73-77.
[12] LUO G, LI W, LIANG W, et al. Coupling effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites[J]. Composites Part B: Engineering, 2017, 111(1): 1-39.
doi: 10.1016/j.compositesb.2016.11.054
[13] 邵灵达, 申晓, 金肖克, 等. 涤纶纤维表面复合改性对其亲水性的影响[J]. 丝绸, 2020, 57(2): 19-24.
SHAO Lingda, SHEN Xiao, JIN Xiaoke, et al. Effect of surface modification of polyester fiber on its properties[J]. Journal of Silk, 2020, 57(2): 19-24.
[14] XING J, XU Z, NI Q Q, et al. Preparation and characterization of polyphenylene sulfide/graphene nanoplatelets composite fibers with enhanced oxidation resistance[J]. High Performance Polymers, 2019, 32(4): 394-405.
doi: 10.1177/0954008319867748
[15] 宋雪旸, 张岩, 徐成功, 等. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
SONG Xueyang, ZHANG Yan, XU Chenggong, et al. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites[J]. Journal of Textile Research, 2021, 42(11): 84-88.
[16] HU J, LI F, WANG B, et al. A two-step combination strategy for significantly enhancing the interfacial adhesion of CF/PPS composites: the liquid-phase oxidation followed by grafting of silane coupling agent[J]. Composites Part B: Engineering, 2020, 191(1): 1-12.
[17] 杨杰. 聚苯硫醚树脂及其应用[M]. 北京: 化学工业出版社, 2005: 100-113.
YANG Jie. Polyphenylene sulfide resin and its application[M]. Beijing: Chemical Industry Press, 2005: 100-113.
[1] 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96.
[2] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[3] 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193.
[4] 叶伟, 余进, 龙啸云, 孙启龙, 马岩. 丝瓜络基碳材料的电磁波吸收性能[J]. 纺织学报, 2022, 43(04): 33-39.
[5] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[6] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
[7] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[8] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[9] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[10] 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27.
[11] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[12] 吕丽华, 李臻, 张多多. 废弃秸秆/聚己内酯吸声复合材料的制备与性能[J]. 纺织学报, 2022, 43(01): 28-35.
[13] 李博, 樊威, 高兴忠, 王淑娟, 李志虎. 碳纤维增强类玻璃环氧高分子复合材料闭环回收利用[J]. 纺织学报, 2022, 43(01): 15-20.
[14] 方寅春, 孙卫昊. 阻燃纤维素气凝胶研究进展[J]. 纺织学报, 2022, 43(01): 43-48.
[15] 王松立, 王美林, 周湘, 刘遵峰. 人造蜘蛛丝与仿蜘蛛丝纤维的研究进展[J]. 纺织学报, 2021, 42(12): 174-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!