纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 34-41.doi: 10.13475/j.fzxb.20210202008

• 纤维材料 • 上一篇    下一篇

聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能

贾琳1(), 王西贤1, 李环宇1, 张海霞1, 覃小红1,2   

  1. 1.河南工程学院 纺织工程学院, 河南 郑州 450007
    2.东华大学 纺织学院, 上海 201620
  • 收稿日期:2021-02-07 修回日期:2021-08-19 出版日期:2021-12-15 发布日期:2021-12-29
  • 作者简介:贾琳(1986—),女,副教授,博士。主要研究方向为功能性纳米纤维纺织品。E-mail: lynnjia0328@163.com
  • 基金资助:
    河南省高校重点科研项目(21B540001);河南省青年人才托举工程项目(2019HYTP011);河南工程学院科研培育基金项目(PYXM202106)

Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane

JIA Lin1(), WANG Xixian1, LI Huanyu1, ZHANG Haixia1, QIN Xiaohong1,2   

  1. 1. College of Textiles Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-02-07 Revised:2021-08-19 Published:2021-12-15 Online:2021-12-29

摘要:

为制备高效低阻的纳米纤维过滤膜,将无机驻极体BaTiO3纳米颗粒加入聚丙烯腈(PAN)溶液中,利用静电纺丝方法制备PAN/BaTiO3复合纳米纤维过滤膜,对其表面形貌、化学结构、水接触角、力学性能和过滤性能进行分析。结果表明:PAN/BaTiO3纳米纤维的直径比纯PAN纳米纤维略有降低,且BaTiO3纳米颗粒均匀地分散在纤维内部;与纯PAN纳米纤维膜相比,PAN/BaTiO3复合纳米纤维过滤膜的水接触角更大,抗污染能力更强,拉伸强度最高增加了75.5%;当BaTiO3质量分数为0.75%时,PAN/BaTiO3复合纳米纤维过滤膜的过滤效率为98.9%,阻力压降为42.7 Pa, 品质因子为0.105 6,其中静电吸附作用占总过滤效果的36.2%,该纤维膜过滤性能最好,且具有一定的循环使用性能。

关键词: BaTiO3, 聚丙烯腈, 静电纺丝, 纳米纤维, 驻极体, 过滤性能

Abstract:

In order to prepare nanofibrous filter membrane with high filter efficiency and low resistance, BaTiO3 nano-particles were added into polyacrylonitrile(PAN) solution to prepare PAN/BaTiO3 composite nanofibrous filter membrane using electrospinning technology, and the surface morphology, chemical structure, water contact angle, mechanical properties and filtration properties of the membrane were analyzed. The results showed that PAN/BaTiO3 composite nanofibers possess smaller fiber diameter compared to pure PAN nanofibers. Elemental mapping images showed that BaTiO3 nano-particles were dispersed in the nanofibers uniformly. Compared with pure PAN nanofiber, the water contact angles of PAN/BaTiO3 nanofibrous composite filter membrane were larger, hence their anti-pollution abilities were stronger. The maximum tensile strength of PAN/BaTiO3 nanofiber composite filter membrane increased by 75.5%. When the mass fraction of BaTiO3was 0.75%, the filtration efficiency of composite fiber filter membrane was 98.9%, the resistance pressure drop was 42.7 Pa, the maximum quality factor is 0.105 6, and the percentage of electrostatic adsorption effect in the total filtration effect was 36.2%, reaching the optimal filtration performance. It was also found that such membrane can be used repeatedly to some extent.

Key words: BaTiO3, polyacrylonitrile, electrospinning, nanofiber, electret, filter property

中图分类号: 

  • TS102.6

图1

PAN/BaTiO3复合纳米纤维过滤膜的SEM照片(×10 000)"

图2

PAN/BaTiO3复合纳米纤维过滤膜的O元素扫描分析图"

图3

PAN/BaTiO3复合纳米纤维过滤膜的红外光谱图"

图4

PAN/BaTiO3复合纳米纤维过滤膜的水接触角"

图5

PAN/BaTiO3纳米纤维过滤膜的拉伸曲线"

图6

不同纺丝时间下PAN/BaTiO3复合纳米纤维过滤膜的过滤性能"

图7

PAN/BaTiO3复合纳米纤维过滤膜的透气率和透湿率"

图8

PAN/BaTiO3复合纳米纤维过滤膜的表面电压随放置时间的变化"

图9

PAN/BaTiO3复合纳米纤维过滤膜的机械过滤性能"

图10

不同放置时间下PAN/BaTiO3复合纳米纤维过滤膜的过滤效率"

图11

蒸馏水浸泡前后PAN/BaTiO3复合纳米纤维过滤膜的微观形态(×5 000)"

[1] LI H, CAI J, CHEN R, et al. Particulate matter exposure and stress hormone levels: a randomized, double-blind, crossover trial of air purification[J]. Circulation, 2017, 136(7):618-627.
doi: 10.1161/CIRCULATIONAHA.116.026796
[2] 赵兴雷. 空气过滤用高效低阻纳米纤维材料的结构调控及构效关系研究[D]. 上海:东华大学, 2017:6-8.
ZHAO Xinglei. Tunable fabrication of nanofibrous materials with high-efficiency and low-resistance and their application in air filtration[D]. Shanghai:Donghua University, 2017:6-8.
[3] ZHOU M, HU M, QUAN Z, et al. Polyacrylonitrile/polyimide composite sub-micro fibrous membranes for precise filtration of PM0.26 pollutants[J]. Journal of Colloid and Interface Science, 2020, 578:195-206.
doi: 10.1016/j.jcis.2020.05.081
[4] CAI R R, LI S Z, ZHANG L Z, et al. Fabrication and performance of a stable micro/nano composite electret filter for effective PM2.5 capture[J]. Science of the Total Environment, 2020, 725:138297.
doi: 10.1016/j.scitotenv.2020.138297
[5] LI X Q, WANG N, FANG G, et al. Electreted polyetherimide-silica fibrous membranes for enhanced filtration of fine particles[J]. Journal of Colloid and Interface Science, 2015, 439:12-20.
doi: 10.1016/j.jcis.2014.10.014
[6] YANG X, PU Y, ZHANG Y F, et al. Multifunctional composite membrane based on BaTiO3@PU/PSA nanofibers for high-efficiency PM2.5 removal[J]. Journal of Hazardous Materials, 2020, 391:122254.
doi: 10.1016/j.jhazmat.2020.122254
[7] WANG N, CAI M, YANG X, et al. Electret nanofibrous membrane with enhanced filtration performance and wearing comfortability for face mask[J]. Journal of Colloid and Interface Science, 2018, 530:695-703.
doi: 10.1016/j.jcis.2018.07.021
[8] GAO H C, HE W D, ZHAO Y B, et al. Electret mechanisms and kinetics of electrospun nanofiber membranes and lifetime in filtration applications in comparison with corona-charged membranes[J]. Journal of Membrane Science, 2020, 600:117879-117889.
doi: 10.1016/j.memsci.2020.117879
[9] 贾琳, 王西贤, 陶文娟, 等. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(6):14-20.
JIA Lin, WANG Xixian, TAO Wenjuan, et al. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes[J]. Journal of Textile Research, 2020, 41(6):14-20.
[10] 刘成林, 李远光, 张兆奎. BaTiO3超薄膜的制备和性能研究[J]. 电子原件与材料, 2004, 23(6):4-5.
LIU Chenglin, LI Yuanguang, ZHANG Zhaokui. Study on the preparation and properties of BaTiO3 ultrathin film[J]. Electronic Components & Materials, 2004, 23(6):4-5.
[11] DING X X, LI Y Y, SI Y, et al. Electrospun polyvinylidene fluoride/SiO2 nanofibrous membranes with enhanced electret property for efficient air filtration[J]. Composites Communications, 2019, 13:57-62.
doi: 10.1016/j.coco.2019.02.008
[1] 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57.
[2] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[3] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[4] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[5] 刘强飞, 吴韶华, 杨吉震, 周蓉, 董湘琳, 宋传波, 沈照旭. 芳纶纳米纤维改性聚四氟乙烯/聚苯硫醚针刺毡的制备及其性能[J]. 纺织学报, 2021, 42(10): 47-52.
[6] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[7] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[8] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[9] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52-58.
[10] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[11] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[12] 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68.
[13] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[14] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[15] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[4] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[5] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[6] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .
[7] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[8] 郑天勇.;崔世忠. 用B样条曲面构建纱线三维模型的研究(Ⅱ):纱线捻度的三维模拟[J]. 纺织学报, 2006, 27(3): 24 -26 .
[9] 曹红梅;沈晓飞;任学勤;赵宏. CHF导入式倍捻锭子[J]. 纺织学报, 2006, 27(3): 77 -79 .
[10] 邓桦;张纪梅;李秀明;李鹤;唐万生. 纳米二氧化钛多功能织物整理剂的制备与性能[J]. 纺织学报, 2006, 27(3): 92 -94 .