纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 84-91.doi: 10.13475/j.fzxb.20210203808

• 纺织工程 • 上一篇    下一篇

编织热密封组件的高温密封性能

刘俊立1,2, 徐志高1(), 张峰2,3, 田干1, 杨正伟1, 王玉3   

  1. 1.火箭军工程大学 导弹工程学院, 陕西 西安 710025
    2.北京星际荣耀科技有限责任公司, 北京 100176
    3.陕西星际荣耀空间科技有限责任公司, 陕西 西安 710100
  • 收稿日期:2021-02-15 修回日期:2021-05-17 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 徐志高
  • 作者简介:刘俊立(1997—),男,硕士生。主要研究方向为高超声速飞行器用高温动密封技术。
  • 基金资助:
    国家自然科学基金项目(92060106);国家自然科学基金项目(52075541)

High-temperature sealing performance of braided heat-sealed components

LIU Junli1,2, XU Zhigao1(), ZHANG Feng2,3, TIAN Gan1, YANG Zhengwei1, WANG Yu3   

  1. 1. College of Missile Engineering Institute, Rocket Force University of Engineering, Xi'an, Shaanxi 710025, China
    2. Beijing Interstellar Glory Technology Co., Ltd., Beijing 100176, China
    3. Shaanxi Interstellar Glory Space Technology Co., Ltd., Xi'an, Shaanxi 710100, China
  • Received:2021-02-15 Revised:2021-05-17 Published:2021-10-15 Online:2021-10-29
  • Contact: XU Zhigao

摘要:

为研究编织热密封组件直接应用于高温工况环境下的密封性能,选用三维双股编织绳和双层三股编织弹簧管2种密封组件。基于多孔介质的Kozeny-Carman方程,建立了2种密封组件的密封泄漏模型。采用高温密封试验分别对其进行了高温密封性能测试,得到了2种高温密封组件在不同压差、不同工况温度环境下的泄漏量,验证了模型的有效性。研究结果表明:三维双股编织绳和双层三股编织弹簧管密封组件的泄漏量均随着压差的不断增加而逐渐变大,而随着温度的增加逐渐降低。在相同工况条件下,双层三股编织弹簧管密封组件的泄漏量均小于三维双股编织绳。研究结果可为适用于高温环境密封结构的选择提供参考依据。

关键词: 热密封组件, 编织结构, 密封泄漏模型, 高温密封性能

Abstract:

In order to study the sealing performance of braided heat-sealing components directly applied to high-temperature environments, two types of sealing components are selected: three-dimensional double-strand braided rope and double-layer three-strand braided spring tube. Based on the Kozeny-Carman equation of porous media, two sealing leakage models of the sealing components are established. The high-temperature sealing performance was tested separately by high-temperature sealing test, and the leakage of two high-temperature sealing components under different pressure differences and different working conditions and temperatures were obtained, which verified the validity of the model. The research results show that the leakage of the sealing components of the three-dimensional double-strand braided rope and the double-layer three-stranded spring tube gradually increases with the continuous increase of the pressure difference, and gradually decreases with the increase of the temperature. Under the same working conditions, the leakage of the double-layer three-strand braided spring tube seal assembly is less than that of the three-dimensional double-strand braided rope. The research results can provide a reference for the selection of sealing structures suitable for high-temperature environments.

Key words: heat sealing component, braided structure, sealing leakage model, high temperature sealing performance

中图分类号: 

  • TS10

图1

密封组件示意图"

表1

密封组件主要结构性能"

密封组件 密封组件结构 材 料 编织方式
3DDSBR 编织绳 石英纤维棉 三维编织
DLTSBST 外层护套 陶瓷纤维 WallStent
内层护套 陶瓷纤维 WallStent
编织弹簧管 GH 141 Strecker
内部填芯 陶瓷纤维棉

图2

密封泄漏示意图"

图3

密封组件多孔介质模型示意图"

图4

3DDSBR密封组件泄漏示意图"

图5

DLTSBST密封组件泄漏示意图"

图6

DLTSBST密封组件泄漏通道和泄漏速率示意图"

图7

高温热阻密封实验平台示意图"

图8

2种密封组件实验与理论数据对比"

图9

3DDSBR密封组件试验与理论数据对比"

图10

DLTSBST密封组件实验与理论数据对比"

图11

不同压差下2种密封组件实验与理论数据对比"

[1] 刘军, 刘奎, 宁博, 等. 三维编织复合材料T型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12):57-62.
LIU Jun, LIU Kui, NING Bo, et al. Bending properties of three-dimensional braided composite T-beam at low temperature[J]. Journal of Textile Research, 2019, 40(12):57-62.
[2] MUNK D J, VERSTRAETE D, VIO G A. Effect of fluid-thermal-structural interactions on the topology optimization of a hypersonic transport aircraft wing[J]. Journal of Fluids and Structures, 2017, 75:45-76.
doi: 10.1016/j.jfluidstructs.2017.08.007
[3] 张宇玮, 姜艳青, 石刚, 等. 高温基线密封研究进展[J]. 宇航材料工艺, 2011, 41(2):21-25.
ZHANG Yuwei, JIANG Yanqing, SHI Gang, et al. Research progress of high temperature baseline sealing[J]. Journal of Aerospace Material Technology, 2011, 41(2):21-25.
[4] 薛俊川. 高超声速飞行器陶瓷栅板式密封设计研究[J]. 飞机设计, 2016, 36(2):48-52.
XUE Junchuan. Research on the design of ceramic grid seals for hypersonic aircraft[J]. Journal of Aircraft Design, 2016, 36(2):48-52.
[5] STEINETZ B M, ADAMS M L, BARTOLOTTA P A, et al. High-temperature braided rope seals for static sealing applications[J]. Journal of Propulsion and Power, 1997, 13(5):675-682.
doi: 10.2514/2.5219
[6] STEINETZ B. Effects of compression, staging, and braid angle on braided rope seal performance [C]//33rd Joint Propulsion Conference and Exhibit. Seattle: AIAA, 1997:28-72.
[7] CAI Z, MUTHARASAN R, KO F K, et al. Development of hypersonic engine seals-flow effects of preload and engine pressures[J]. Journal of Propulsion and Power, 1994, 10(6):884-889.
doi: 10.2514/3.23827
[8] MUTHARASAN R, TAO X, KO F, et al. Development of braided rope seals for hypersonic engine applications. II-Flow modeling [C]//27th Joint Propulsion Conference. Seattle: AIAA, 1991:24-95.
[9] 焦亚男, 李想, 方鹏, 等. 三维编织石英纤维热密封材料气密性能研究[J]. 固体火箭技术, 2017, 40(3):358-363.
JIAO Yanan, LI Xiang, FANG Peng, et al. Air-tight performance of three-dimensional braided quartz fiber heat sealing material[J]. Solid Rocket Technology, 2017, 40(3):358-363.
[10] 焦亚男, 景媛媛, 方鹏, 等. 立体编织石英纤维热密封环的气密性能[J]. 纺织学报, 2017, 38(6):46-51.
JIAO Yanan, JING Yuanyuan, FANG Peng, et al. Airtightness of three-dimensional woven quartz fiber heat sealing ring[J]. Journal of Textile Research, 2017, 38(6):46-51.
[11] PATRICK D J, STEINETZ B, CURRY D. Investigtions of control surface seals for re-entry vehicles [C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Seattle: Seattle: AIAA, 2002:39-41.
[12] PATRICK D J, STEINETZ B, CURRY D. Rudder/fin seal investigations for the X-38 re-entry vehicle [C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Seattle: AIAA, 2005:41-54.
[13] TAYLOR S, DEMANGE J, DUNLAP P. Evaluation of high temperature knitted spring tubes for structural seal applications [C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Seattle: AIAA, 2004:38-90.
[14] DEMANGE J, DUNLAP P, STEINETZ B. Improved Seals for High Temperature Airframe Applications [C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Seattle: AIAA, 2006:49-35.
[15] 彭祖军. 高温动密封结构设计与分析[D]. 哈尔滨: 哈尔滨工业大学, 2011: 3-29.
PENG Zujun. Design and analysis of high temperature dynamic seal structure[D]. Harbin: Harbin Institute of Technology, 2011: 3-29.
[16] 薛云嘉, 贾韬, 王锐桐, 等. 用于热密封组件的编织弹簧弹性性能分析[J]. 稀有金属材料与工程, 2020, 49(2):494-499.
XUE Yunjia, JIA Tao, WANG Ruitong, et al. Elastic performance analysis of braided spring used for heat-sealing components[J]. Rare Metal Materials and Engineering, 2020, 49(2):494-499.
[17] 焦亚男, 仇普霞, 方鹏, 等. 热密封件用三维编织物压缩性能试验研究[J]. 固体火箭技术, 2015, 38(6):865-869.
JIAO Yanan, QIU Puxia, FANG Peng, et al. Experimental study on compression performance of three-dimensional braid for heat seals[J]. Solid Rocket Technology, 2015, 38(6):865-869.
[1] 刘俊立 徐志高 张峰 田干 杨正伟 王玉. 编织热密封组件高温密封性能研究[J]. , 2021, 42(10): 0-0.
[2] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[3] 焦亚男 景媛媛 方鹏 赵玉芬. 立体编织石英纤维热密封环的气密性能[J]. 纺织学报, 2017, 38(06): 46-51.
[4] 曹红蓓;王君泽;瞿畅;刘春元. 管状立体编织物三维动画仿真探索[J]. 纺织学报, 2004, 25(05): 71-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!