纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 48-54.doi: 10.13475/j.fzxb.20210505807

• 纤维材料 • 上一篇    下一篇

氮化硅纤维的聚硅氮烷氧热交联法制备及其性能

李海龙, 陈建军(), 鲍之豪, 熊艺莲, 林文鑫   

  1. 浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
  • 收稿日期:2021-05-24 修回日期:2022-05-06 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 陈建军
  • 作者简介:李海龙(1995—),男,硕士生。主要研究方向为氮化硅陶瓷纤维。
  • 基金资助:
    国家自然科学基金项目(51872262);国家自然科学基金项目(51572243)

Preparation and properties of silicon nitride fibers by oxygen thermal cross-linking of polysilazane

LI Hailong, CHEN Jianjun(), BAO Zhihao, XIONG Yilian, LIN Wenxin   

  1. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-05-24 Revised:2022-05-06 Published:2022-08-15 Online:2022-08-24
  • Contact: CHEN Jianjun

摘要:

为探究聚硅氮烷(PSZ)纤维氧热交联不熔化处理最佳工艺和氧热交联对PSZ纤维及氮化硅(Si3N4)纤维组成与结构的影响,以甲基二氯硅烷和二甲基二氯硅烷为原料,通过氨解、热聚合、熔融纺丝、氧热交联及裂解等工艺制备了Si3N4纤维。借助傅里叶红外光谱仪、扫描电子显微镜、X射线衍射仪等对样品的结构和性能进行测试与分析。结果表明:PSZ纤维在120 ℃保温12 h进行氧热交联后,其陶瓷产率较未处理纤维提升了约10.2%,最后在1 400 ℃保温2 h裂解可得到表面光滑平坦、无沟槽裂纹等缺陷的Si3N4纤维;将Si3N4纤维继续在空气气氛下于1 500 ℃氧化处理2 h,可在纤维表面氧化形成一层SiO2,是典型的皮芯结构纤维。

关键词: 先驱体转化法, 聚硅氮烷, 氮化硅纤维, 氧热交联

Abstract:

To explore the optimum technology of oxygen thermal cross-linking for polysilazane (PSZ) fibers and the effect of oxygen thermal cross-linking on compositions and structures of PSZ fibers and silicon nitride (Si3N4) fibers, Si3N4 fibers were successfully prepared using methyldichlorosilane and dimethyldichlorosilane as raw materials by ammonolysis polycondensation, thermopolymerization, melt spinning, oxygen thermal cross-linking and pyrolysis. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and some other measures were utilized to analyze the structure and properties of the samples. After the PSZ fibers cured at 120 ℃ for 12 h, its ceramic yields were higher than that of uncured PSZ fibers by about 10.2%. The Si3N4 fibers with smooth flat surface and without groove cracks and other defects were obtained by pyrolysis of the cured PSZ fibers at 1 400 ℃ for 2 h. Furthermore, a layer of SiO2 crystalline phase was observed on the surface of the Si3N4 fibers after high-temperature oxidation in air at 1 500 ℃ for 2 h. The obtained fibers after oxidation was a typical type of skin-core structure fibers.

Key words: precursor derived method, polysilazane, silicon nitride fiber, oxygen thermal cross-linking

中图分类号: 

  • TB34

图1

硅氮烷低聚物、PSZ纤维原丝、PSZ交联丝及Si3N4纤维的红外光谱图"

图2

PSZ和Si3N4纤维的XPS全谱图"

表1

PSZ及Si3N4纤维中元素含量"

纤维名称 O1s N1s C1s Si2s Si2p
PSZ纤维 2.79 16.02 38.97 21.01 21.22
Si3N4纤维 17.47 11.50 30.24 19.89 20.89

图3

PSZ和Si3N4纤维的XPS窄扫描谱图"

图4

不同温度处理下PSZ纤维的表观形貌"

图5

PSZ纤维在120 ℃处理不同时间的表观形貌"

图6

氧热交联前后PSZ纤维的TG曲线"

图7

Si3N4纤维及高温氧化处理后纤维的SEM照片"

图8

Si3N4纤维及高温氧化处理后Si3N4纤维的XRD图谱"

[1] HU Xu, SHAO Changwei, WANG Jun, et al. Characterization and high-temperature degradation mechanism of continuous silicon nitride fibers[J]. Journal of Materials Science, 2017, 52(12): 7555-7566.
doi: 10.1007/s10853-017-0988-7
[2] ZHANG Sainan, HUA Yu, WANG Qi, et al. Effects of oxygen on the thermal stability of silicon nitride fibers[J]. Journal of the European Ceramic Society, 2022, 42(6): 2691-2698.
doi: 10.1016/j.jeurceramsoc.2022.01.066
[3] LI Yang, GAO Jiacheng. Preparation of silicon nitride ceramic fibers from polycarbosilane fibers by γ-ray irradiation curing[J]. Materials Letters, 2013, 110: 102-104.
doi: 10.1016/j.matlet.2013.07.127
[4] COLOMBO Paolo, MERA Gabriela, RIEDEL Ralf, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. J Am Ceram Soc, 2010, 93(7): 1805-1837.
[5] 王浩, 王金龙, 苟燕子. 先驱体转化法制备高性能碳化硼陶瓷材料研究进展[J]. 无机材料学报, 2017, 32(8): 785-791.
WANG Hao, WANG Jinlong, GOU Yanzi. Progress of advanced boron carbide ceramic materials prepared by precursor derived method[J]. Journal of Inorganic Materials, 2017, 32(8): 785-791.
doi: 10.15541/jim20160524
[6] YANG Xuejie, LI Bin, LI Duan, et al. Fabrication and oxidation resistance of silicon nitride fiber reinforced silica matrix wave-transparent composites[J]. Journal of Materials Science and Technology, 2019, 35(12): 21-26.
[7] OKAMURA K, SATO M, HASEGAWA Y. Silicon nitride fibers and silicon oxynitride fibers obtained by the nitridation of polycarbosilane[J]. Ceramics International, 1987, 13(1): 55-61.
doi: 10.1016/0272-8842(87)90038-1
[8] FLORES Octavio, BORDIA Rajendra K, NESTLER Daisy, et al. Ceramic fibers based on SiC and SiCN systems: current research, development, and commercial status[J]. Advanced Engineering Materials, 2014, 16(6): 621-636.
doi: 10.1002/adem.201400069
[9] LEGROW G E, LIM F, LIPOWITZ J, et al. Ceramic fibers from hydridopolysilazane[J]. Journal de Chimie Physique, 1986, 83: 869-873.
doi: 10.1051/jcp/1986830869
[10] 宋永才, 冯春祥, 薛金根. 氮化硅纤维研究进展[J]. 高科技纤维与应用, 2002(2): 6-11.
SONG Yongcai, FENG Chunxiang, XUE Jingen. The progress of research on silicon nitride fiber[J]. Hi-Tech Fiber and Application, 2002 (2): 6-11.
[11] FUNAYAMA Osamu, ARAI Mikiro, TASHIRO Yuji, et al. Tensile strength of silicon nitride fibers produced from perhydropolysilazane[J]. Journal of the Ceramic Society of Japan, 1990, 98(1): 104-107.
doi: 10.2109/jcersj.98.104
[12] 滕雅娣, 孙晓龙, 黄鑫龙, 等. 不同分子量的陶瓷前驱体聚硅氮烷的结构与性能的研究[J]. 功能材料, 2015, 46(9): 9031-9035.
TENG Yadi, SUN Xiaolong, HUANG Xinlong, et al. Research of chemical structures and properties of pre-ceramic polymer polysilazanes with different molecular weight[J]. Journal of Functional Materials, 2015, 46(9): 9031-9035.
[13] 王岭, 宋永才, 许云书, 等. 含乙烯基的聚硅氮烷先驱体纤维的制备[J]. 高分子材料科学与工程, 2000, 7(5): 109-112.
WANG Ling, SONG Yongcai, XU Yunshu, et al. Synthesis of vinyl-containing polysilazane precusors[J]. Polymer Materials Science & Engineering, 2000, 7(5): 109-112.
[14] 兰琳, 夏文丽, 陈剑铭, 等. 聚碳硅烷氮化热解法制备Si3N4纤维[J]. 功能材料, 2013(20): 2981-2984.
LAN Lin, XIA Wenli, CHEN Jianming, et al. Preparation of silicon nitride fibers by pyrolysis nitridation of polycarbosilance[J]. Journal of Functional Materials, 2013 (20): 2981-2984.
[15] QI G J, ZHANG C R, HU H F. Continuous silica fiber reinforced silica composites densified by polymer-derived silicon nitride: mechanical properties and microstructures[J]. Journal of Non-Crystalline Solids, 2006, 352(36): 3794-3798.
doi: 10.1016/j.jnoncrysol.2006.06.015
[16] DONG Xichao, GUO Changqing, LIU Xingyu, et al. Processing, characterization and properties of novel gradient Si3N4/SiC fibers derived from polycarbosilanes[J]. Journal of the European Ceramic Society, 2019, 39(13): 3613-3619.
doi: 10.1016/j.jeurceramsoc.2019.05.028
[17] 卢玲, 冯春祥, 宋永才. 聚硅氮烷纤维的BCl3不熔化处理研究[J]. 宇航材料工艺, 1997(3): 32-35,55.
LU Ling, FENG Chunxiang, SONG Yongcai. Study on the curing of poltyilazane fibers using boron trichloride[J]. Aerospace Materials & Technology, 1997(3): 32-35,55.
[18] 汤明, 丁马太, 苏智明, 等. 聚碳硅烷纤维氧化交联机理的研究[J]. 功能材料, 2012, 43(17): 2332-2337.
TANG Ming, DING Matai, SU Zhiming, et al. Study on the oxidation-curing mechanism of polycarbosilane fibers[J]. Journal of Functional Materials, 2012, 43(17): 2332-2337.
[19] 郑春满, 朱冰, 李效东, 等. 聚碳硅烷纤维的热交联研究[J]. 高分子学报, 2004, 2(2): 246-250.
ZHENG Chunman, ZHU Bing, LI Xiaodong, et al. Study on the thermal-curing of polycarbosilane fibers[J]. Acta Polymerica Sinica, 2004, 2(2): 246-250.
[20] REN Z, GERVAIS C, SINGH G. Preparation and structure of SiOCN fibres derived from cyclic silazane/poly-acrylic acid hybrid precursor[J]. Royal Society Open Science, 2019, 6(10): 19-27.
[21] SONG Y C, ZHAO Y, FENG C X, et al. Synthesis and pyrolysis of polysilazane as the precursor of Si3N4/SiC ceramic[J]. Journal of Materials Science, 1994, 29(21): 5745-5756.
doi: 10.1007/BF00349975
[22] 考可辰. 聚硅氮烷陶瓷先驱体的制备、纺丝及陶瓷化性能研究[D]. 杭州: 浙江理工大学, 2020: 33-35.
KAO Kechen. Research on synthesis, spinning and ceramic properties of polysilazane ceramic precursor[D]. Hangzhou: Zhejiang Sci-Tech University, 2020: 33-35.
[23] LI Xiaohong, XU Zhaofang, CHEN Lu, et al. Thermal oxidation curing polycarbosilane fibers by alternating air and vacuum process[J]. RSC Advances, 2020, 10(44): 26052-26058.
doi: 10.1039/d0ra04888g pmid: 35519766
[24] SCHMACK G, TÄNDLER B, VOGEL R, et al. Biodegradable fibers of poly(L-lactide) produced by high-speed melt spinning and spin drawing[J]. Journal of Applied Polymer Science, 2015, 73(14): 2785-2797.
doi: 10.1002/(SICI)1097-4628(19990929)73:14<2785::AID-APP1>3.0.CO;2-L
[25] CERNY M, GLOGAR P, SUCHARDA Z. Mechanical properties of basalt fiber reinforced composites prepared by partial pyrolysis of a polymer precursor[J]. Journal of Composite Materials, 2009, 43(9): 1109-1120.
doi: 10.1177/0021998308097732
[26] BERNARD S, WEINMANN M, GERSTEl P, et al. Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: synthesis, melt-spinning, curing and ceramic conversion[J]. Journal of Materials Chemistry, 2005, 15(2): 289-299.
doi: 10.1039/b408295h
[1] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[2] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[3] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[4] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[5] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[6] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[7] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
[8] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[9] 黄程博, 任学宏. 静电纺抗菌聚丙烯腈纳米纤维膜制备及其性能[J]. 纺织学报, 2019, 40(05): 7-11.
[10] 张维 李秋瑾 张健飞. 层层组装微胶囊的制备及其缓释性能[J]. 纺织学报, 2015, 36(03): 58-62.
[11] 叶靖 惠全 李妮 熊杰. 碳∕氧化锌复合纳米纤维膜的制备及其电阻率的测试分析[J]. 纺织学报, 2014, 35(6): 25-0.
[12] 张倩倩 孙卫国 张迎晨. 聚乙二醇/膨胀石墨/聚丙烯复合相变材料的制备及表征[J]. 纺织学报, 2014, 35(3): 13-0.
[13] 王晓, 杨启鹏, 邵伟, 崔永珠, 徐明媚. 羟基磷灰石/聚丙烯腈光接枝复合膜的制备与表征[J]. 纺织学报, 2012, 33(4): 24-28.
[14] 赵健 肖长发 徐乃库. 夹层型聚甲基丙烯酸酯系复合吸油材料制备与性能[J]. 纺织学报, 2011, 32(7): 17-22.
[15] 田涛;吴金辉;郝丽梅;林松;杨荆泉;. 聚丙烯熔喷纤维驻极体滤材的储电性能[J]. 纺织学报, 2010, 31(6): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!